The Impact of Exposure Settings in Digital Image Forensics

Li Lin*, Wenhao Chen*, Yangxiao Wang*, Stephanie Reinder* Min Wu[†], Yong Guan*, and Jennifer Newman*

> * Iowa State University, Ames, IA, USA [†]University of Maryland, College Park, MD, USA

> > 09/10/2018

Outline

Motivation: StegoAppDB – A Benchmark Image Database for Steganography Apps $^{\rm 1}$

Steganalysis under Different Exposure Settings

Camera Device Identification under Different ISO Settings

¹This work was partially funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) through Cooperative Agreement #70NANB15H176 between NIST and Iowa State University.

"Steganography", which is a composite word of the Greek words "steganos" and "graphia", is the hiding of a message ("payload") into an image.

- "Steganography", which is a composite word of the Greek words "steganos" and "graphia", is the hiding of a message ("payload") into an image.
- "Steganalysis" is a forensic process to detect steganography using statistics, machine learning, and other methods.

- "Steganography", which is a composite word of the Greek words "steganos" and "graphia", is the hiding of a message ("payload") into an image.
- "Steganalysis" is a forensic process to detect steganography using statistics, machine learning, and other methods.
- Academic steganography and steganalysis techniques are very successful in the academic environment using sophisticated embedding and detection methods, and data typically collected from digital still cameras.

- "Steganography", which is a composite word of the Greek words "steganos" and "graphia", is the hiding of a message ("payload") into an image.
- "Steganalysis" is a forensic process to detect steganography using statistics, machine learning, and other methods.
- Academic steganography and steganalysis techniques are very successful in the academic environment using sophisticated embedding and detection methods, and data typically collected from digital still cameras.
- However, large gaps exist between academic results and applications used by forensic analysts, especially for detecting stego images created from mobile apps.

Steganography and Steganalysis in the wild

Seven selected stego apps from Google Play Store

App Name	# Installs	Output Format	Open Source
PixelKnot	100,000 - 500,000	JPEG	yes
Steganography Master	10,000 - 50,000	PNG	no
Steganography_M	10,000 - 50,000	PNG	no
Da Vinci Secret Image	5,000 - 10,000	PNG	no
PocketStego	1,000 - 5,000	PNG	no
MobiStego	1,000 - 5,000	PNG	yes
Passlok Privacy	1,000 - 5,000	JPEG	yes

Building StegoAppDatabase

- Design a database that is authenticated, has a large number of images, from a variety of cell phone models.
- Create a collection of images from mobile phones, including stego images from apps.

Building StegoAppDatabase

- Design a database that is authenticated, has a large number of images, from a variety of cell phone models.
- Create a collection of images from mobile phones, including stego images from apps.

Questions

- Which exposure settings/scenes shall we use? Auto Exposure?
- How can we make the image data more representative?

 BOSSbase [Bas and Filler, 2011]: The most popular image database for steganography and steganalysis.

- BOSSbase [Bas and Filler, 2011]: The most popular image database for steganography and steganalysis.
- ▶ 10,000 cover images, EXIF data, seven digital still cameras.

- BOSSbase [Bas and Filler, 2011]: The most popular image database for steganography and steganalysis.
- ▶ 10,000 cover images, EXIF data, seven digital still cameras.
- Images were collected in auto-exposure settings or semi-auto settings, with the intent to produce high visual-quality images.

Experiments on BOSSbase

- Select images taken by the PENTAX 20D in BOSSbase: 603 images with ISO 200 and 358 images with ISO 100.
- Cut all those 961 images into 5 pieces.
- Implement embedding algorithm "Mipod" [Sedighi, 2016] with 0.1 payload size.
- Use the "Spatial Rich Model" [Fridrich and Kodovsky, 2012] for feature extraction, and the FLD ensemble classifier [Kodovsky, 2012] for classification.

Experiments on BOSSbase

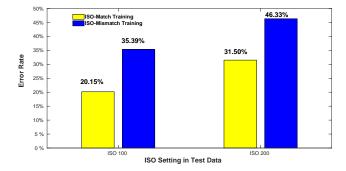


Figure 1: Steg Detect Error rates on different ISO data from BOSSbase.

CSCAFE Curter for Statistics and Applications in Ferencia Evidence ForensicStats.org

Discussion and further experiments

In the auto-exposure mode, a digital camera is programmed to choose an ISO value and exposure time, such that the digital photograph has a high signal-to-noise ratio (SNR) and low "image noise."

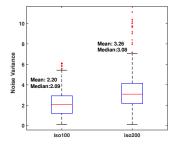
Discussion and further experiments

- In the auto-exposure mode, a digital camera is programmed to choose an ISO value and exposure time, such that the digital photograph has a high signal-to-noise ratio (SNR) and low "image noise."
- According to the ISO standard [ISO 12232, 2006], images with higher ISO or longer exposure time have larger grey values and more noise than images with lower ISO and shorter exposure time.

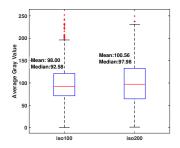
Discussion and further experiments

- In the auto-exposure mode, a digital camera is programmed to choose an ISO value and exposure time, such that the digital photograph has a high signal-to-noise ratio (SNR) and low "image noise."
- According to the ISO standard [ISO 12232, 2006], images with higher ISO or longer exposure time have larger grey values and more noise than images with lower ISO and shorter exposure time.
- We apply a wavelet denoiser for each image we used in BOSSbase to get a clean image, and then compute the noise level as the mean of the residual image.

Further experiments on BOSSbase.



(a) Boxplots of Noise Levels



(b) Boxplots of Grey Values

Further experiments on BOSSbase.

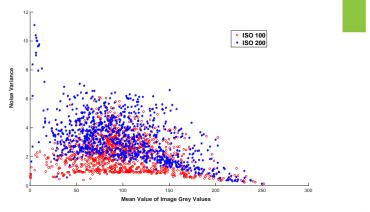


Figure 2: Noise level v.s. average grey value

Experiments on Images from one iPhone 7

Table 1: Misclassification rates on data with different ISO settings

-

. •

1 /000

. •

1 / = 0

		Exposure time $=1/200s$	Exposure time $=1/50$ s
Test data ISO	Training data ISO	Avg. error rate (a)	Avg. error rate (b)
100	100	7.72%	14.92%
	200	28.89%	24.93%
	1000	38.04%	40.70%
	100	17.89%	26.18%
200	200	9.90%	18.67%
	1000	30.39%	46.79%
	100	48.50%	42.16%
1000	200	42.18%	34.04%
	1000	18.08%	12.57%

Experiments on Images from one iPhone 7

Table 2: Misclassification rates on data with different exposure time

		ISO=100	ISO=200
Test exposure time	Training exposure time	Avg. error rate (c)	Avg. error rate (d)
1/200 s	1/200 s	7.72%	9.90%
	1/50 s	16.89%	20.52%
	1/10 s	37.88%	40.71%
1/50 s	1/200 s	24.47%	25.13%
	1/50 s	14.92%	18.67%
	1/10 s	27.89%	28.18%
1/10 s	1/200 s	34.31%	24.50 %
	1/50 s	24.09%	19.90 %
	1/10 s	15.95%	12.20%

Behind the exposure settings are the noise levels, which play an important role in steganalysis.

- Behind the exposure settings are the noise levels, which play an important role in steganalysis.
- Applying a well-trained classifier to target data with different exposure settings brings significantly higher errors.

- Behind the exposure settings are the noise levels, which play an important role in steganalysis.
- Applying a well-trained classifier to target data with different exposure settings brings significantly higher errors.
- Adapting the exposure parameters for the target images can significantly improve the performance of a forensic analyzer.

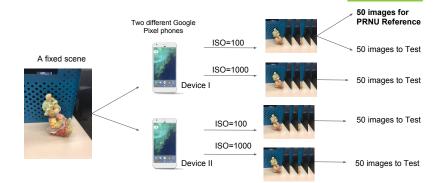
- Behind the exposure settings are the noise levels, which play an important role in steganalysis.
- Applying a well-trained classifier to target data with different exposure settings brings significantly higher errors.
- Adapting the exposure parameters for the target images can significantly improve the performance of a forensic analyzer.
- In order to build a benchmark image database for detecting stego apps, the diversity of exposure settings for images in such a database must be taken into account.

PRNU-based Camera Device Identification under Different ISO Settings

Photo-Response Non-Uniformity

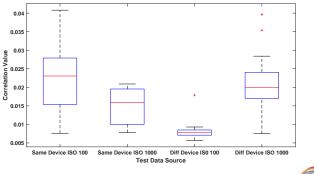
- Multiplicative noise, known as the camera fingerprint.
- Independent of temperature and time
- Inhomogeneous nature of silicon sensor for the digital camera.
- Similar for all images from the same camera, but different between distinct devices.
- The correlation between the reference PRNU and the target ones are widely used for device identification.

Experimental Design for the Camera Identification under Different ISO Settings (Exposure Time = 1/50 s)



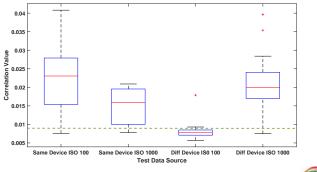
Experimental Result for the Camera Identification under Different ISO Settings

Setting ISO=100, and exposure time=1/50 s, the PRNU reference is generated by 50 images with a fixed scene indoor.



Experimental Result for the Camera Identification under Different ISO Settings

Setting ISO=100, and exposure time=1/50 s, the PRNU reference is generated by 50 images with a fixed scene indoor.



Demo of StegoAppDB

Questions?

The End

