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Matrix Sketching



Introduction

Matrix sketching
Recovery of a large dimensional sparse matrix X from its sketch Y.

• The sketchY ≜ AXBT is a low dimensional linear observation.

• The sketching (or measurement) matrices A and B are known
and satisfy restricted isometry property (RIP).

• The matrices A and B are of dimension L×M and P ×N ,
respectively.

• Typically, max(L,P ) ≪ min(M,N).

Applications

• Image processing.
• MIMO communication and error control coding.
• Random graph identification.
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Classical sparse recovery

Formally, the matrix sketching problem can be stated as

min
X̂∈RM×N

∥X̂∥1 s.t. AX̂BT = Y. (1)

By vectorizing the matrices X and Y, this problem can be reduced
to the compressed sensing framework as

min
x̂∈RMN

∥x̂∥1 s.t. Cx̂ = y. (2)

x̂ = vec(X̂), x = vec(X), y = vec(Y), C = B⊗A

Several algorithms are known in the literature to solve (2).

In the recent past, algorithms to directly solve (1) have also been
proposed.
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Discrete valued matrix sketching

Let A be a finite set of non-zero elements and Ā ≜ A ∪ 0.

Now, the discrete valued matrix sketching problem can be stated as

min
X̂∈ĀM×N

∥X̂∥1 s.t. AX̂BT = Y, (3)

min
x̂∈ĀMN

∥x̂∥1 s.t. Cx̂ = y. (4)

Our goal is to solve the general and noisy version of the above
problem, which can be formulated as

min
X̂∈ĀM×N

∥X̂∥1 + λ∥Y −AX̂BT ∥2, (5)

min
x̂∈ĀMN

∥x̂∥1 + λ∥y −Cx̂∥2. (6)
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Matching Pursuit based Matrix
Sketching



Greedy is good1

Matching pursuit
Iteratively recover the support by projecting the residue over the atoms
until the residue is minimized.

Y can be written as sum ofMN rank-one matrices

AXBT =
M∑
i=1

N∑
j=1

Xijaib
T
j =

K∑
k=1

Xikjkaikb
T
jk
. (7)

Here, the atoms are Φn ≜ ainb
T
jn
.

Projection
The support can be recovered by the following projection operation

sk = argmax
i,j

∣∣aTi Ybj

∣∣ . (8)

1J. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE
Transactions in Information Theory, vol. 50, no. 10, 2004.
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Matching pursuit based direct matrix sketching

1 Initialize
Residue: R0 = Y, support set S0 = {∅}, and iteration index k = 1.

2 Projection
Find the best matching index sk ≜ {ik, jk}.

3 Update Support
Sk = Sk−1 ∪ sk .

4 Update Residue
Compute Rk .

5 Check and Terminate
Stop if k ≥ K , else increment k and go to Step 2.

5/15



Computing the residue

The key component of the proposed matrix sketching algorithm is
the computation of the residue for discrete valued sparse matrices.

Rk = min
Xn∈A

∥∥∥∥Y −
k∑

n=1

XnΦn

∥∥∥∥
2

. (9)

State-of-art: solve (9) using linear filtering or convex programming.

However, such methods can be very much sub-optimal for discrete
valued matrices.

Optimal solution: Maximum a posteriori (MAP) solver. Has a
computational complexity of O(|A|kLP ).

Proposed solution: Belief propagation (BeP) based solver. Has a low
computational complexity of O(LP |A|k2).
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Residue computation using belief propagation

The observation can be written as

Y =

k∑
n=i

XnΦn +

K∑
m=k+1

XmΦm︸ ︷︷ ︸
≜ Γk, bias matrix

+ W︸︷︷︸
noise matrix

(10)

BeP algorithm iteratively computes the approximate MAP solution.

• Passes beliefs over a bipartite graph with k factor nodes and
LP observation nodes.

• The observation nodes compute Pr(Yij |Xn = x ∈ A) and send
these beliefs to the corresponding factor nodes.

• Using these beliefs, the factor nodes compute the posterior
probability Pr(Xn = x ∈ A|Y,Φ).

• Near optimal for large dimensions.
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Constrained Message Passing



Greedy is not always good

Can we do better than matching pursuit?

• Sparse recovery algorithms known in the literature are optimal
in the mean squared error (MSE) sense but not in the symbol
error rate (SER) sense.

• For recovering discrete valued sparse quantities, greedy
algorithms may not always be optimal.

• The residues computed through linear techniques for discrete
quantities do not always achieve optimality.

• The residues computed through iterative techniques introduce
the problem of error propagation.

• Sub-optimal performance at low values of SNR.

• One solution: MAP based recovery algorithm.
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Constrained message passing

The proposed solution is a message passing algorithm to compute
the MAP solution in the vectorized model.

An approximately MAP solution is obtained by constructing a
bipartite graph using the posterior probability

Pr(x|y) ∝ Pr(y|x) Pr(x) = Pr(y|x) Pr(x|s) Pr(s). (11)

Here, s is the support vector of x.

Unlike traditional message passing algorithms, here, we compute
the posterior probabilities Pr(x|y) subject to the constraint given by
the support.

This is referred to as constrained message passing (CoMP) algorithm.
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Messages in CoMP

There are LP observation nodes andMN factor nodes.

Observation to factor node message

• The likelihoods Pr(yi|xj = x ∈ Ā).

• Easy to compute with central limit theorem for high values of K .

Factor to observation node message

• Applying the support constraints, the posteriors are evaluated
as Pr(xj = x ∈ Ā|sj = s ∈ {0, 1}, yi) Pr(sj = s ∈ {0, 1}|yi).

• The symbol-posteriors can be simplified as,

Pr(xj = 0|sj = 0, yi) = 1,

Pr(xj = x ∈ A|sj = 0, yi) = Pr(xj = 0|sj = 1, yi) = 0.
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The constraints

In evaluation of the support-posteriors Pr(sj |yi), the sparsity
structure in x is utilized.

• Let G1, · · · ,GQ be sets of indices and
∪Q

q=1 Gq = {1, · · · ,MN}.

• Let Kq = ∥sTGq
∥0, i.e., the number of non-zero elements in xT

Gq
.

• The sparsity constraint Cq :
∑

j∈Gq
sj = Kq .

• Hence, a valid x should satisfy Q constraints C1, · · · , CQ.

• Let C′
j be the set of indices of the constraints to which sj

belongs, C′
j ⊆ {1, · · · , Q}.

Now, the support-posteriors can be evaluated as

Pr(sj |yi) = Pr(sj |yi, C′
j) ∝ Pr(C′

j |sj , yi) Pr(sj). (12)
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Example

Consider X to be a K-sparse matrix. Here,

Q = 1, G1 = {1, · · · ,MN}, K1 = K, C1 :
MN∑
j=1

sj = K.

The support-posteriors are

Pr(sj = 0|yi)∝Pr

(MN∑
l̸=j

sl = K
∣∣∣yi) K

MN
∝ Pr

(MN∑
l̸=j

sl = K
∣∣∣yi),

Pr(sj = 1|yi)∝Pr

(MN∑
l̸=j

sl = K − 1
∣∣∣yi) K

MN
∝ Pr

(MN∑
l̸=j

sl = K − 1
∣∣∣yi).

The above probabilities can be obtained by convolution of K − 1

Bernoulli distributions obtained from the likelihoods.

This computation can be further simplified using central limit
theorem for large values of K .
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Numerical Results



Recovery performance
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Performance of CoMP and OMP-MS forM = N = 32, K = 20, and
different sketching matrices sizes.
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Recovery performance
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K = 10, and different values of SNR.
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Conclusions



Summary

• We described the discrete valued sparse matrix sketching
problem, which naturally arises in several practical scenarios.

• We presented a matching pursuit based matrix sketching
algorithm with low computational complexity.

• We presented the constrained message passing algorithm which
provides very good recovery performance even at low values of
SNR and has the flexibility to exploit arbitrary sparsity
structures.
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Thank You!
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