Fast Image Matching based on Fourier-Mellin Phase Correlation for Tag-Less Identification of Mass-Produced Parts

Rui Ishiyama, Toru Takahashi, Kengo Makino, and Yuta Kudo Data Science Research Laboratories, NEC Corporation, Japan

Objective: Parts identification using "Fingerprint of Things" image matching

> Background: Growing demands for traceability of industrial products and their internal parts > Tagging or marking is not allowed for many inside parts due to size, cost or their functionality

Solution: biometrics-like ID by image matching

Non-additive and zero-cost: useful ID for inside parts (::)

Problem: Matching numerous random patterns under geometric changes

FAST matching of random patterns under geometric changes is needed

Proposed method: Fourier-Mellin Band-Limited Phase (FMBLP) Correlation

> Fourier-Mellin phase correlation: Position, scale and rotation invariant image matching > Direct matching based on correlation between query- and DB- FMBLP features without alignment > FMBLPs of DB images are extracted offline: **Online process is much faster** than conventional methods

Experiments: 1-vs-1,210 matching in only 0.136 seconds and 100% accuracy

> Captured 1,210 pairs of images including position, scale and rotation changes -> 450 times faster than conventional method and perfect identification accuracy

Target object: metal shafts

Precision metal parts made with NC lathe machine (Average surface roughness: $Ra \doteq 0.3 \mu m$)

1,210 registered images

1,210 query images

Online processing time for 1-vs-1,210 matching and Equal Error Rates

Methods	[sec]	EER[%]
Align + BLPOC ^[10]	62.0	0
FMP correlation	4.09	2.15
Proposed : FMBLP correlation	0.136	0

※CPU: Intel Core i7-3.6GHz, MEM: 32GB, OS: Windows 7 64bit [10] A. Nikaido, et. al. IEEE ICIP 2007.

E-mail: r-ishiyama@bl.jp.nec.com

