





# Joint Weighted Dictionary Learning and Classifier Training for Robust Biometric Recognition

Rahman Khorsandi, Ali Taalimi, Mohamed Abdel-Mottaleb, Hairong Qi University of Miami, University of Tennessee, Knoxville {r.khorsandi,mottaleb@umiami.edu} {ataalimi, hqi}@utk.edu

### Outline

- Background
- Motivation
- Contribution
- Experiment

#### Sparse Representation-based Classification

# Training Phase:

## A. The training dataset:

$$\mathbf{Y}_{c} \in \mathcal{R}^{m \times n_{c}} = \{\mathbf{y}_{i,c} \mid i \in \{1, \dots, n_{c}\}\}$$

$$\mathbf{Y} \in \mathcal{R}^{m \times N} = \{\mathbf{Y}_{c} \mid c \in \{1, \dots, C\}\}$$

J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(2):210-227, Feb 2009.

#### Sparse Representation-based Classification

# Training Phase:

### B. Make the dictionary:

$$\mathbf{D}_c = [\mathbf{y}_{1,c}, \cdots, \mathbf{y}_{N_c,c}], \ \mathbf{D} = [\mathbf{D}_1, \mathbf{D}_2, \dots, \mathbf{D}_C]$$

#### Sparse Representation-based Classification

Training Phase:

## B. Make the dictionary:

1. Fixed:

2. Learning: 
$$\min_{\mathbf{D}} \triangleq \frac{1}{N} \sum_{i} \mathcal{L}_{u}(\mathbf{x}_{i}, \mathbf{D})$$

$$\mathcal{L}_{u}(\mathbf{x}_{i}, \mathbf{D}) \triangleq \min_{\mathbf{x}_{i} \in \mathbb{R}^{p}} \left\| \mathbf{y}_{i,c} - \mathbf{D}_{c} \mathbf{x}_{i,c} \right\|_{2}^{2} + \lambda_{1} \left\| \mathbf{x}_{i,c} \right\|_{1}^{2} + \lambda_{2} \left\| \mathbf{x}_{i,c} \right\|_{2}^{2}$$

#### **Testing Phase**

# Dictionary D from training phase:

A. Reconstruct test signal.

$$egin{aligned} \min_{\mathbf{x}_t^* \in \mathbb{R}^p} & \left\| \mathbf{y}_t - \mathbf{D} \mathbf{x}_t^* 
ight\|_2^2 + \lambda_1 \left\| \mathbf{x}_t^* 
ight\|_1 + \lambda_2 \left\| \mathbf{x}_t^* 
ight\|_2 \ & \delta_C(\mathbf{x}) = \left[ \mathbf{0}^T, \cdots, \mathbf{0}^T, \mathbf{x}_c^T, \cdots, \mathbf{0}^T 
ight]^T \ & c^* = \min_{c} \left\| \left\| \mathbf{y}_t - \mathbf{D}_c \delta_c(\mathbf{x}_t) 
ight\|_{\ell^c} \end{aligned}$$

B. Feature extraction.

$$\min_{\mathbf{w}} \sum_{i=1}^{N} \left| \left| \mathbf{h}_{i} - \mathbf{W} \mathbf{x}_{i} \right| \right|_{2}^{2} + \frac{\nu}{2} \left| \left| \mathbf{W} \right| \right|_{F}^{2}$$

#### Motivation

#### Sparse Representation-based Classification

#### · Issues:

A. Apply unsupervised dictionary for discriminative task.

B. Atoms are not required to be uncorrelated.

C. Train an independent classifier.

Learn classifier

wrt the current dictionary

Task Driven
Optimization

Minimize correlation between atoms

Dictionary that is discriminative and reconstructive

Weighted Dictionary Learning

**Bi-level Optimization** 

J.Mairal, F.Bach and J.Ponce. Task-driven dictionary learning. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(4):791-804, April 2012.

M. Yang, D. Dai, L. Shen, and L. Van Gool. Latent dictionary learning for sparse representation based classification. In Computer Vision and Pattern Recognition (CVPR), 2014. Joint Weighted Dictionary Learning and Classifier Training

#### Task driven dictionary learning

Joint estimation of dictionary and classifier:

$$\min_{\mathbf{D}, \mathbf{W}} \sum_{i=1}^{N} \left| \left| \mathbf{h}_{i} - \mathbf{W} \mathbf{x}_{i}^{*}(y_{i}, D) \right| \right|_{2}^{2} + \frac{\nu}{2} \left\| \mathbf{W} \right\|_{F}^{2}$$

$$\min_{\mathbf{x}_{i},\mathbf{D}} \left\| \mathbf{y}_{i} - \mathbf{D} \mathbf{x}_{i} \right\|_{2}^{2} + \lambda \left\| \mathbf{x}_{i} \right\|_{1} \quad \forall i$$

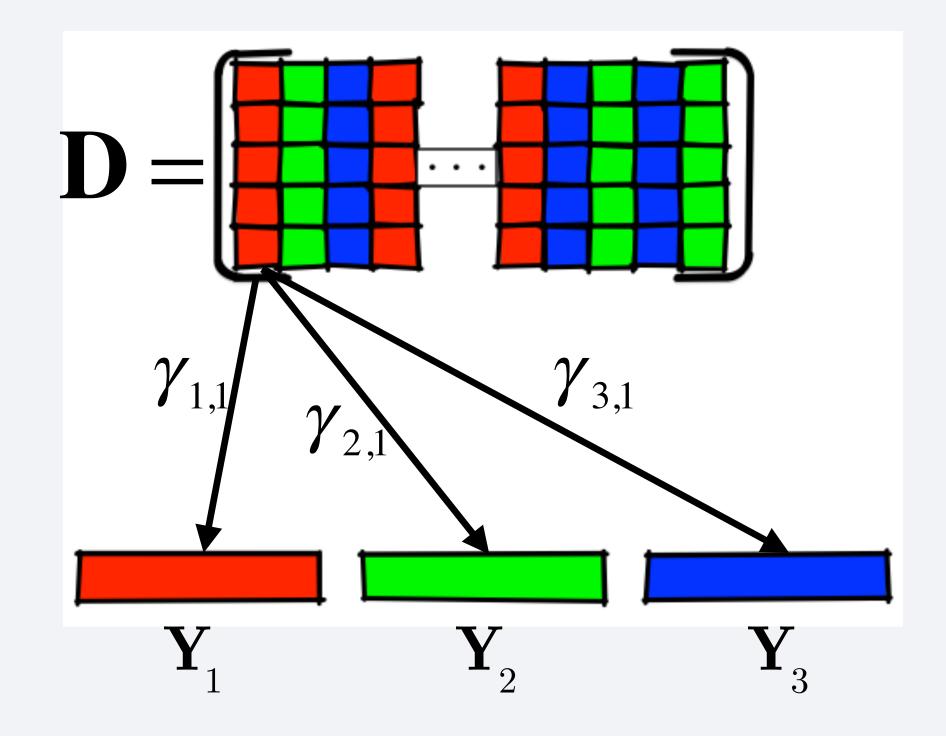
#### Weighted Dictionary Learning

 Correlation between atoms and c-th class:

$$oldsymbol{\gamma}_c = [oldsymbol{\gamma}_{c,1}, oldsymbol{\gamma}_{c,2}, \cdots, oldsymbol{\gamma}_{c,p}]^T,$$

$$\gamma_{c,i} \geq 0, \forall i \in \{1, \dots, p\}$$

$$\sum_{i=1}^p {oldsymbol{\gamma}}_{c,i} = \sum_{i=1}^p {oldsymbol{\gamma}}_{c',i}$$



$$\operatorname{corr}(\boldsymbol{d_{i}},\boldsymbol{d_{j}})\uparrow\Leftrightarrow(\gamma_{\boldsymbol{c},\boldsymbol{j}}\gamma_{\boldsymbol{l},\boldsymbol{i}})\downarrow$$

M. Yang, D. Dai, L. Shen, and L. Van Gool. Latent dictionary learning for sparse representation based classification. In Computer Vision and Pattern Recognition (CVPR), 2014.

#### Weighted Dictionary Learning

$$\begin{split} \min_{\mathbf{D}, \gamma_c, \mathbf{X}} \sum_{c=1}^{C} & \left\| \mathbf{Y}_c - \mathbf{D} diag(\boldsymbol{\gamma}_c) \mathbf{X}_c \right\|_F^2 + \boldsymbol{\lambda}_1 \left\| \mathbf{X}_c \right\|_1 \\ + & \lambda_2 \sum_{c=1}^{C} \sum_{l \neq c} \sum_{i=1}^{p} \sum_{j \neq i} \boldsymbol{\gamma}_{c,j} (\mathbf{d}_j^T \mathbf{d}_i)^2 \boldsymbol{\gamma}_{l,i} \\ & \boldsymbol{\gamma}_{c,i} \geq 0 \text{ and } \sum_{i=1}^{p} \boldsymbol{\gamma}_{c,i} = \sum_{i=1}^{p} \boldsymbol{\gamma}_{l,i}, \, \forall c, l \end{split}$$

#### Reconstruct data as:

$$\mathbf{Y}_{c} \approx \mathbf{D}diag(\gamma_{c})\mathbf{X}_{c}$$

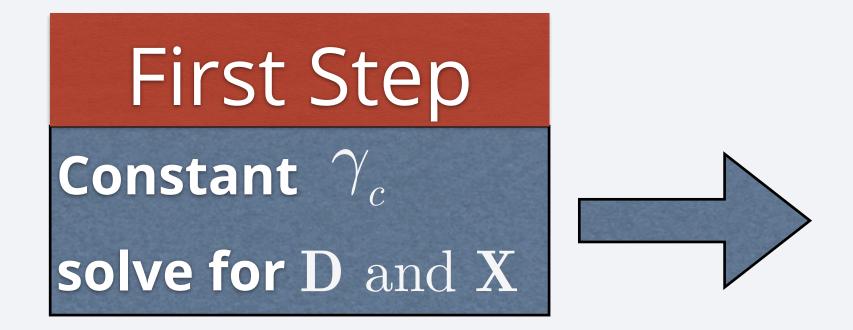
M. Yang, D. Dai, L. Shen, and L. Van Gool. Latent dictionary learning for sparse representation based classification. In Computer Vision and Pattern Recognition (CVPR), 2014.

#### Joint Weighted Dictionary Learning and Classifier Training

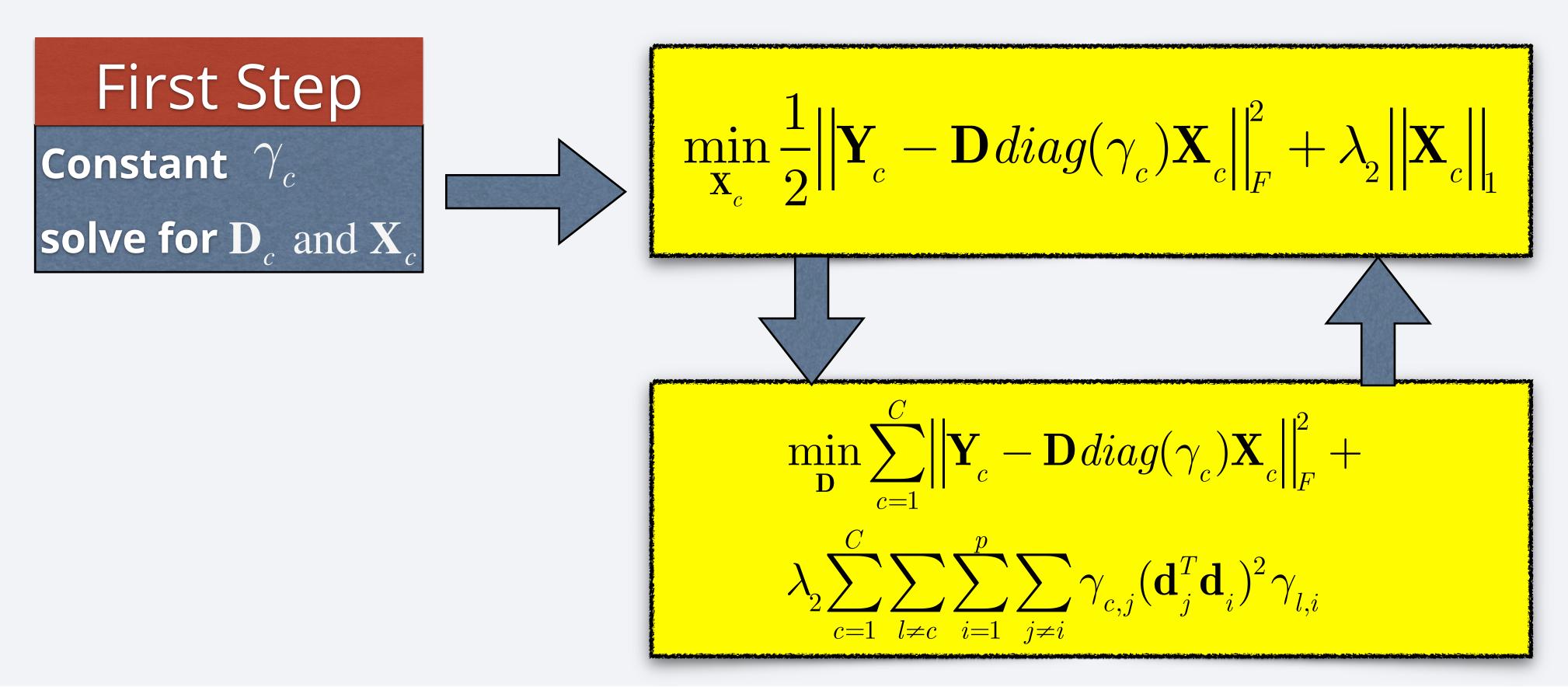
$$\min_{\mathbf{D},\mathbf{W}} \sum_{i=1}^{N} \left\| \mathbf{h}_i - \mathbf{W} \mathbf{x}_i^*(\boldsymbol{y}_i, \mathbf{D}) \right\|_2^2 + \frac{\nu}{2} \, \| \, \mathbf{W} \, \|_F^2 \quad \longleftarrow \text{Task Driven}$$

$$\begin{split} & \min_{\mathbf{D}, \mathbf{F}, \mathbf{X}} \sum_{c=1}^{C} \left\| \mathbf{Y}_{c} - \mathbf{D} diag(\boldsymbol{\gamma}_{c}) \mathbf{X}_{c} \right\|_{F}^{2} + \boldsymbol{\lambda}_{1} \left\| \mathbf{X}_{c} \right\|_{1} \\ & + \boldsymbol{\lambda}_{2} \sum_{c=1}^{C} \sum_{l \neq c} \sum_{i=1}^{p} \sum_{j \neq i} \boldsymbol{\gamma}_{c, j} (\mathbf{d}_{j}^{T} \mathbf{d}_{i})^{2} \boldsymbol{\gamma}_{l, i} \\ & \boldsymbol{\gamma}_{c, i} \geq 0 \text{ and } \sum_{i=1}^{p} \boldsymbol{\gamma}_{c, i} = \sum_{i=1}^{p} \boldsymbol{\gamma}_{l, i}, \, \forall c, l \end{split}$$
 Weighted 
$$\begin{aligned} & \mathbf{Dictionary Learning} \end{aligned}$$

# Optimization



# Optimization



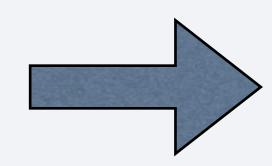
L. Rosasco, A. Verri, M. Santoro, S. Mosci, and S. Villa. Iterative projection methods for structured sparsity regularization. 2009.

M. Yang, D. Dai, L. Shen, and L. Van Gool. Latent dictionary learning for sparse representation based classification. In Computer Vision and Pattern Recognition (CVPR), 2014.

Joint Weighted Dictionary Learning and Classifier Training

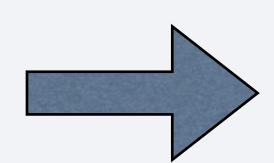
# Optimization

# Second Step Constant D and X solve for $\gamma_c$



$$\begin{split} \min_{\gamma_c} & \left| \left| \mathbf{Y}_c - \mathbf{D} \operatorname{diag}(\gamma_c) \mathbf{X}_c \right| \right|_F^2 + \\ & 2 \lambda_2 \sum_{i=1}^p \gamma_{c,i} \sum_{j \neq i} (\mathbf{d}_j^\intercal \mathbf{d}_i)^2 \sum_{l \neq c} \gamma_{l,j} \end{split}$$

# Third Step Constant X solve for W



$$\min_{\mathbf{W}} \sum_{i=1}^{N} \left| \left| \mathbf{h}_{i} - \mathbf{W} \mathbf{x}_{i} \right| \right|_{2}^{2} + \frac{\nu}{2} \left| \left| \mathbf{W} \right| \right|_{F}^{2}$$

Z. Jiang, Z. Lin, and L. S. Davis. Label consistent k-svd: learning a discriminative dictionary for recognition. Pattern Analysis and Machine Intelligence, 2013.

L. Rosasco, A. Verri, M. Santoro, S. Mosci, and S. Villa. Iterative projection methods for structured sparsity regularization. 2009. Mairal, J., F. Bach, and J. Ponce (2012) "Task-driven dictionary learning," IEEE Trans. Pattern Anal. Mach. Intell., 34(4), pp. 791–804. Joint Weighted Dictionary Learning and Classifier Training

# Testing phase

• From Training:  $\mathbf{D}, \gamma_c$ 

$$\begin{aligned} & \underset{\mathbf{x}_{t,c}}{\min} \left\| \mathbf{Y}_{t} - \mathbf{D} diag(\boldsymbol{\gamma}_{c}) \mathbf{x}_{t,c} \right\|_{F}^{2} + \boldsymbol{\lambda}_{1} \left\| \mathbf{x}_{t,c} \right\|_{1} \\ & + \lambda_{2} \sum_{l \neq c} \sum_{i=1}^{p} \sum_{j \neq i} \boldsymbol{\gamma}_{c,j} (\mathbf{d}_{j}^{T} \mathbf{d}_{i})^{2} \boldsymbol{\gamma}_{l,i} \end{aligned} \qquad \begin{aligned} & \text{Weighted} \\ & \text{Dictionary Learning} \end{aligned}$$

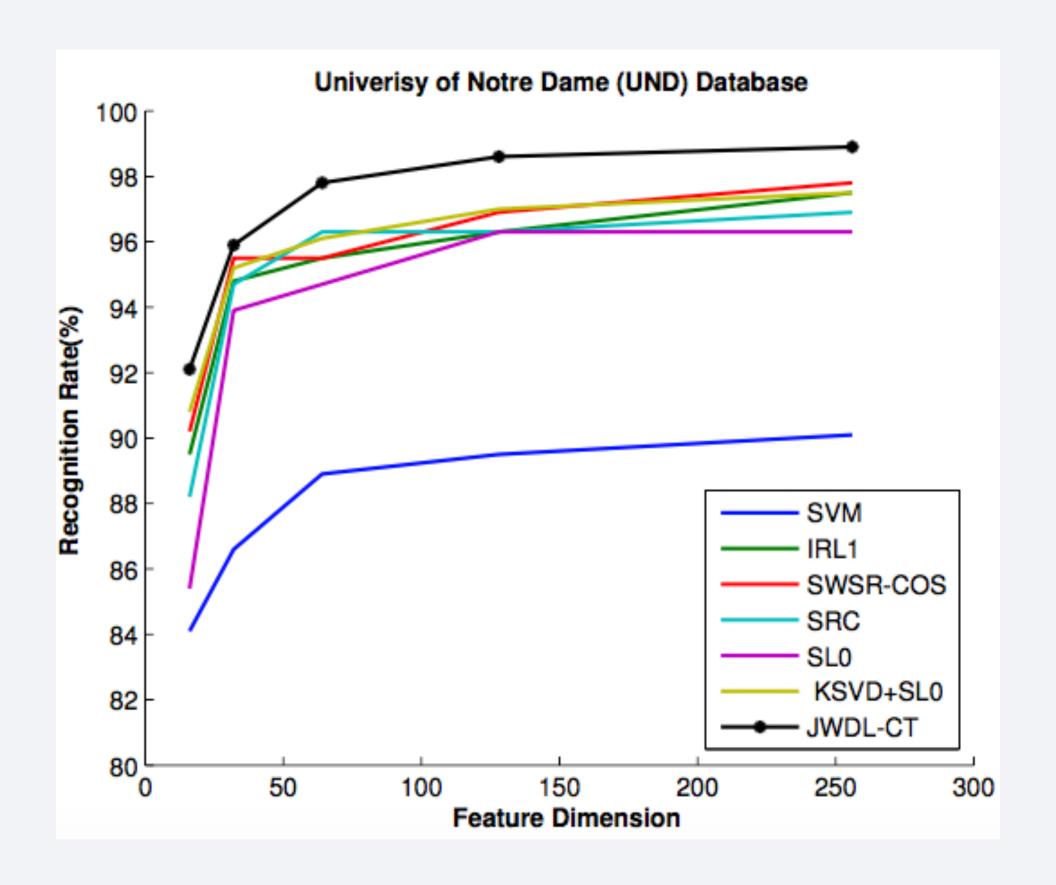
$$\mathcal{E}_{t,c} = \parallel \mathbf{y}_t - \mathbf{D} diag(\gamma_c) \mathbf{x}_{t,c} \parallel_2^2 + \eta \parallel \mathbf{h}_c - \mathbf{W} \mathbf{x}_{t,c} \parallel_2^2$$

# Quantitative Comparison

#### **UND** data set

A. 235 male and 169 female subjects.





# Quantitative Comparison

#### WVU data set

- 5 atoms per subject.
- HoG feature.

| Number of Atoms (per subject) |       |       |       |
|-------------------------------|-------|-------|-------|
| in the Dictionary             | 5     | 7     | 9     |
| NN                            | 74.1% | 77.3% | 79.8% |
| SVM                           | 72.8% | 74.1% | 76.5% |
| Adaboost                      | 68.9% | 72.3% | 75.5% |
| SRC                           | 65.1% | 66.0% | 68.2% |
| LDL                           | 77.5% | 78.1% | 82.1% |
| <b>FDDL</b>                   | 79.5% | 82.3% | 84.5% |
| JWDL-CT                       | 83.6% | 85.7% | 88.2% |

EAR RECOGNITION RATES ON WVU DATABASE.

| Corruption Ratio | 5%    | 10%   | 20%   |
|------------------|-------|-------|-------|
| NN               | 72.5% | 71.1% | 68.1% |
| SVM              | 71.6% | 70.2% | 68.0% |
| Adaboost         | 67.1% | 65.9% | 62.3% |
| SRC              | 64.1% | 63.5% | 62.2% |
| K-SVD + SL0      | 75.9% | 73.6% | 70.0% |
| $\mathbf{FDDL}$  | 78.0% | 76.6% | 73.8% |
| JWDL-CT          | 82.9% | 81.2% | 79.7% |

EAR RECOGNITION RATES UNDER DIFFERENT RATIOS OF RANDOM CORRUPTION.