AUDIO ANALYSIS LAB

A UNIFIED APPROACH TO GENERATING SOUND ZONES USING VARIABLE SPAN LINEAR FILTERS

Taewoong Lee, Jesper Kjær Nielsen, Jesper Rindom Jensen, and Mads Græsbøll Christensen Audio Analysis Lab, CREATE, Aalborg University, Denmark {tlee,jkn,jrj,mgc}@create.aau.dk

AALBORG UNIVERSITY DENMARK

(11)

Introduction

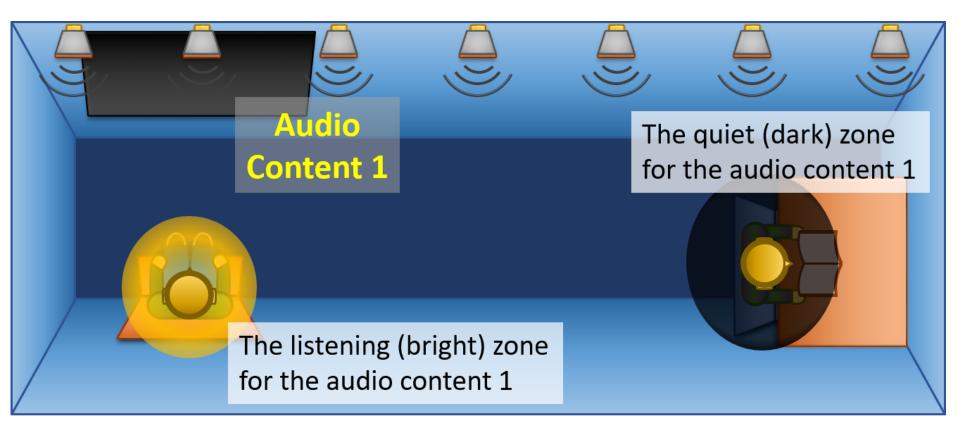


Fig. 1: An illustration of sound zones.

Sound zones enable multiple people to enjoy different audio contents in the same acoustic

A unified framework approach

The unified framework approach is inspired by the VSLF framework [1].

Joint diagonalization

The solution to $\mathbf{R}_{B}\mathbf{q} = \lambda \mathbf{R}_{D}\mathbf{q}$ is a diagonal matrix Λ_{LJ} of the LJ eigenvalues in $\lambda_{1} \geq \cdots \geq \lambda_{LJ}$, and the square matrix $\mathbf{U}_{LJ} = [\mathbf{u}_{1}, \cdots, \mathbf{u}_{LJ}]$ of the LJ eigenvectors. These jointly diagonalize $\mathbf{R}_{B}, \mathbf{R}_{D}$

 $\boldsymbol{U}_{LJ}^{T}\boldsymbol{R}_{B}\boldsymbol{U}_{LJ} = \boldsymbol{\Lambda}_{LJ}, \quad \boldsymbol{U}_{LJ}^{T}\boldsymbol{R}_{D}\boldsymbol{U}_{LJ} = \boldsymbol{I}_{LJ}. \quad (5)$

Low-rank approximation *q* can be written as a linear combination, i.e.,

Evaluation

- Acoustic contrast γ :
 - $\gamma_V(\mu) = \kappa^2 \frac{\boldsymbol{a}_V^T(\mu) \boldsymbol{\Lambda}_V \boldsymbol{a}_V(\mu)}{\boldsymbol{a}_V^T(\mu) \boldsymbol{a}_V(\mu)}$

leads to $\gamma_V(\mu) \ge \gamma_{V'}(\mu)$ if $V \le V'$.

Signal distortion S_B : $S_C(V) = S_B(V) + S_D(V)$ as a function of V

$$S_{B}(V) = \sigma_{d}^{2} - \sum_{\nu=1}^{V} \frac{\lambda_{\nu} + 2\mu}{(\lambda_{\nu} + \mu)^{2}} \|\boldsymbol{u}_{\nu}^{T}\boldsymbol{r}_{B}\|^{2}, \quad (12)$$
$$S_{D}(V) = \sum_{\nu=1}^{V} \frac{1}{(\lambda_{\nu} + \mu)^{2}} \|\boldsymbol{u}_{\nu}^{T}\boldsymbol{r}_{B}\|^{2}, \quad (13)$$
where $\sigma_{d}^{2} = N^{-1} \sum_{n=0}^{N-1} \|\boldsymbol{d}_{B}[n]\|^{2}.$

space without disturbing each other.

We propose a general framework to create sound zones. It trades-off between acoustic contrast and signal distortion.

Generation of sound zones

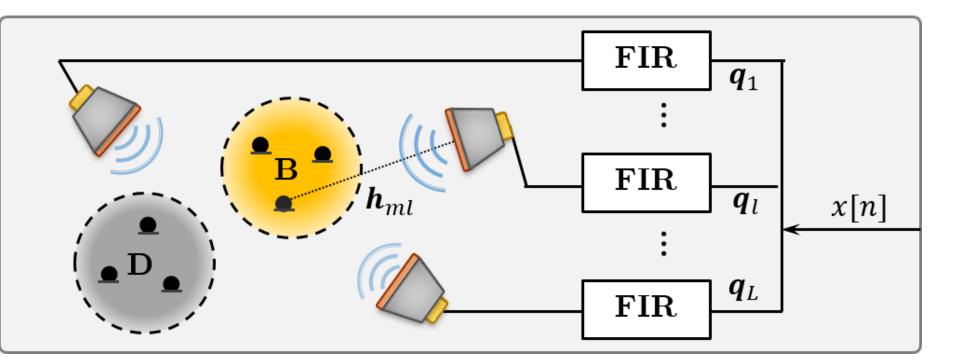


Fig. 2: An illustration of sound zones system.

The reproduced sound pressure on the *m*th mic. position by the *L* loudspeakers is

$$p_m[n] = \sum_{l=1}^{L} h_{ml}[n] * q_l[n] * x[n] = \boldsymbol{h}_m^T \mathbb{X}[n] \boldsymbol{q}, \quad (1)$$

where $h_{ml}[n]$ is the room impulse response,

$$\boldsymbol{q} = \boldsymbol{U}_V \boldsymbol{a}_V,$$

(6)

where U_V , a_V are the basis function and the weights, respectively. The first $1 \le V \le LJ$ eigenvectors in U_{LJ} are used as the basis function; hence, the optimization is carried out with respect to a_V . The rank V is a user parameter which controls the trade-off between S_B and γ .

Variable Span Trade-off (VAST)

minimize S_B subject to $S_D \leq \epsilon$, (7)

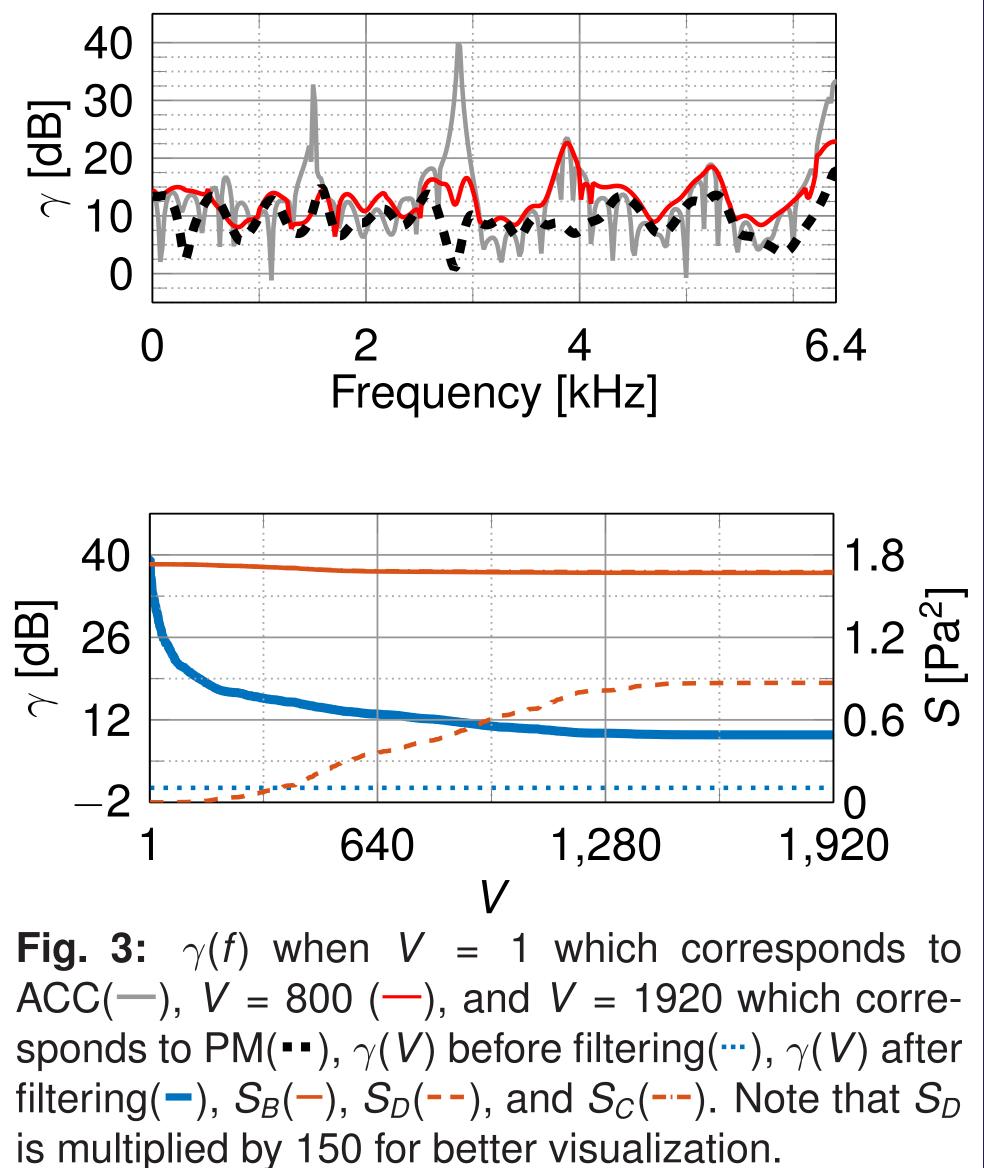
for $1 \le V \le LJ$, the solution is referred to as **a variable span trade-off (VAST) filter**,

$$\boldsymbol{q}_{\text{VAST}}(\boldsymbol{V},\boldsymbol{\mu}) = \boldsymbol{U}_{\boldsymbol{V}}\boldsymbol{a}_{\boldsymbol{V}}(\boldsymbol{\mu}) = \sum_{\boldsymbol{v}=1}^{\boldsymbol{V}} \frac{\boldsymbol{u}_{\boldsymbol{v}}\boldsymbol{u}_{\boldsymbol{v}}^{T}}{\boldsymbol{\mu} + \lambda_{\boldsymbol{v}}}\boldsymbol{r}_{\boldsymbol{B}}, \quad (8)$$

where μ is the Lagrange multiplier, and $r_B = N^{-1} \sum_{n=0}^{N-1} H_B[n] d_B[n]$. The solution can vary with respect to *V* and μ .

Proof-of-concept simulation

- In m radius circular array with three loudspeakers, three microphone positions in each zone, free field, ideal loudspeaker and microphone.
- ► The length of $\{\boldsymbol{q}_I\}_{I=1}^3$ is 50 ms, $f_s = 12.8$ kHz. $\boldsymbol{d}_B[n] = \boldsymbol{H}_B^T[n]\boldsymbol{i}_J^{(L)}$, where $\boldsymbol{i}_J^{(L)} = \boldsymbol{1}_L \otimes \boldsymbol{i}_J$, $\boldsymbol{1}_L = [1, \dots, 1]^T \in \mathbb{R}^{L \times 1}$, \boldsymbol{i}_J is the first column of \boldsymbol{I}_J , $\mu = 1$, and $\boldsymbol{x}[n] = \delta[n]$.
- \blacktriangleright γ w.r.t. frequency, *V*, and *S*_B w.r.t. *V*.



 $\boldsymbol{h}_{ml} = \begin{bmatrix} h_{ml}[0], \cdots, h_{ml}[K - 1] \end{bmatrix}^{T}, \quad \boldsymbol{h}_{m} = \begin{bmatrix} \boldsymbol{h}_{m1}^{T}, \cdots, \boldsymbol{h}_{mL}^{T} \end{bmatrix}^{T}, \quad \{\boldsymbol{q}_{l}[n]\}_{l=1}^{L} \text{ is the control filters,} \\ \boldsymbol{q}_{l} = \begin{bmatrix} \boldsymbol{q}_{l}[0], \cdots, \boldsymbol{q}_{l}[J - 1] \end{bmatrix}^{T}, \quad \boldsymbol{q} = \begin{bmatrix} \boldsymbol{q}_{1}^{T}, \cdots, \boldsymbol{q}_{L}^{T} \end{bmatrix}^{T}, \\ \boldsymbol{X}[n] = \{ \boldsymbol{x}[n-k-j+2] \}_{k=1,j=1}^{K,J}, \quad \mathbb{X}[n] = \boldsymbol{I}_{L} \otimes \boldsymbol{X}[n], \\ \text{and } \boldsymbol{I}_{L} = \text{diag}(1, \cdots, 1) \in \mathbb{R}^{L \times L}. \end{cases}$

The reproduced sound field in the bright zone $\boldsymbol{p}_B[n] = [p_1[n], \dots, p_{M_B}[n]]^T$ is then

 $\boldsymbol{p}_B[\boldsymbol{n}] = \boldsymbol{H}_B^T[\boldsymbol{n}]\boldsymbol{q},$

(2)

where $\boldsymbol{H}_{B}[n] = \mathbb{X}^{T}[n][\boldsymbol{h}_{1}, \dots, \boldsymbol{h}_{M_{B}}]$, and similarly $\boldsymbol{p}_{D}[n]$, $\boldsymbol{H}_{D}[n]$ for the dark zone. For the total zone, $\boldsymbol{p}_{C}[n] = [\boldsymbol{p}_{B}^{T}[n], \boldsymbol{p}_{D}^{T}[n]]^{T}$, $\boldsymbol{H}_{C}[n] = [\boldsymbol{H}_{B}[n], \boldsymbol{H}_{D}[n]]$.

The desired sound field: $\boldsymbol{d}_{C}[n] = [\boldsymbol{d}_{B}^{T}[n], \boldsymbol{0}_{M_{D}}^{T}]^{T}$ **The reproduction error** : $\varepsilon_{C}[n] = \boldsymbol{d}_{C}[n] - \boldsymbol{p}_{C}[n]$

The acoustic potential energy:

Special cases

For
$$V = 1$$
:
 $\boldsymbol{q}_{VAST}(1, \mu) = \frac{\boldsymbol{u}_1 \boldsymbol{u}_1^T}{\mu + \lambda_1} \boldsymbol{r}_B \propto \boldsymbol{u}_1,$ (9)

which is the ACC [2] solution since u_1 is the eigenvector corresponding to the largest eigenvalue.

For
$$V = LJ$$
, $\mu = 1$:
 $\boldsymbol{q}_{VAST}(LJ, 1) = \boldsymbol{U}_V \underbrace{\left(\boldsymbol{\Lambda}_V + \mu \boldsymbol{I}_V\right)^{-1} \boldsymbol{U}_V^T \boldsymbol{r}_B}_{\boldsymbol{a}_V(\mu)}$
 $= \left(\boldsymbol{R}_B + \boldsymbol{R}_D\right)^{-1} \boldsymbol{r}_B,$ (10)

which is the PM [3] solution.

Conclusion

- A new framework to create sound zones.
- ACC and PM as special cases.

$$\boldsymbol{e}_{B} = \frac{1}{M_{B}N} \sum_{n=0}^{N-1} \boldsymbol{p}_{B}^{T}[n]\boldsymbol{p}_{B}[n] = \frac{1}{M_{B}} \boldsymbol{q}^{T} \boldsymbol{R}_{B} \boldsymbol{q}, \quad (3)$$

where *N* is the number of time samples, R_B is a spatial correlation matrix, and similarly e_D , R_D for the dark zone. **The acoustic contrast** : $\gamma = e_B/e_D$

The average reproduction error energy:

$$S_{C} = \frac{1}{N} \sum_{n=0}^{N-1} \|\varepsilon_{C}[n]\|^{2} = S_{B} + S_{D}, \qquad (4$$

where $\|\cdot\|$ is the ℓ_2 norm, S_B , S_D are the distortion and residual energies, respectively.

Table 1: Various solutions for sound zone control
$$\mu$$
 V Analytic form- $- q_{VAST} = \sum_{v=1}^{V} \left[(\mu + \lambda_v)^{-1} u_v u_v^T r_B \right]$ -1 $q_{ACC} = (\mu + \lambda_1)^{-1} u_1 u_1^T r_B$ 0- $q_{MD} = \sum_{v=1}^{V} \left[\lambda_v^{-1} u_v u_v^T r_B \right]$ 0 LJ $q_{MVDR} = R_B^{-1} r_B$ 1- $q_{VS W} = \sum_{v=1}^{V} \left[(1 + \lambda_v)^{-1} u_v u_v^T r_B \right]$ 1 LJ $q_{PM} = (R_B + R_D)^{-1} r_B$

- ► Performance evaluation based on γ and S_B .
- All solutions will have γ and S_B with upper and lower bounded by ACC and PM.

References

- J. R. Jensen, J. Benesty, and M. G. Christensen, "Noise reduction with optimal variable span linear filters," *IEEE/ACM Trans. Audio, Speech, Lang. Process.*, vol. 24, no. 4, pp. 631–644, Apr. 2016.
- [2] J.-W. Choi and Y.-H. Kim, "Generation of an acoustically bright zone with an illuminated region using multiple sources," *J. Acoust. Soc. Am.*, vol. 111, no. 4, pp. 1695–1700, 2002.

[3] M. A. Poletti, "An investigation of 2d multizone surround sound systems," in *Proc. 125th Conv. Audio. Eng. Soc.*, San Francisco, USA, 2008.