A GENERALIZABLE MODEL FOR Seizure Prediction BASED ON DEEP LEARNING USING CNN-LSTM ARCHITECTURE

Mohamad Shahbazi

Sharif University of Technology

Epilepsy

- The fourth most common neurological disorder
- Affecting about 65 million people around the world
- Sudden seizures

Seizure Prediction

- Uncontrollable seizures in $about = \frac{1}{3}$ of the patients
- The importance of seizure prediction systems
- EEG signals

Information obtained from www.epilepsy.com/learn/about-epilepsy-basics

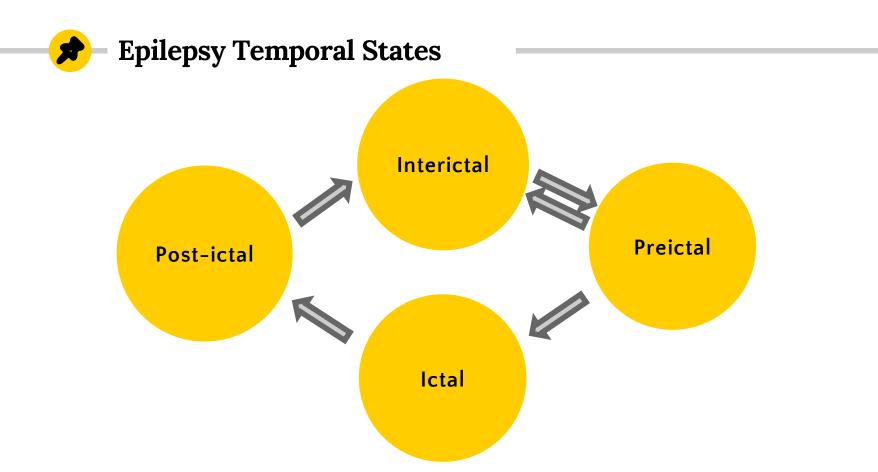
Introduction

Literature Review
Methods and Material
Results and Discussion

Onclusion

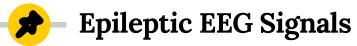
Introduction

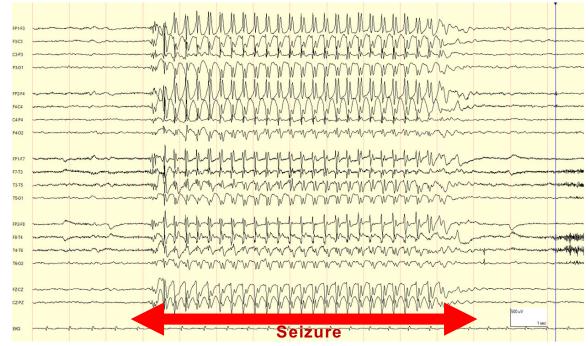
- Literature Review
 Methods and Material
- Results and Discussion
- Conclusion



complexity and variability of the patterns of the preictal stage

- different patients
- different seizures of the same patient





https://www.epilepsydiagnosis.org/seizure/absence-typical-eeg.html

• Proved to be powerful in many areas

Onvolutional Neural Networks (CNN)

 Extracting the best features from the best channels using trainable filters

Recurrent Neural Networks (RNN)

- Sequences
- Long Short-term Memory (LSTM)

Introduction
 Literature Review
 Methods and Material
 Results and Discussion
 Conclusion

Studies based on hand-crafted Features [1]

 Complex and time consuming feature extraction and selection

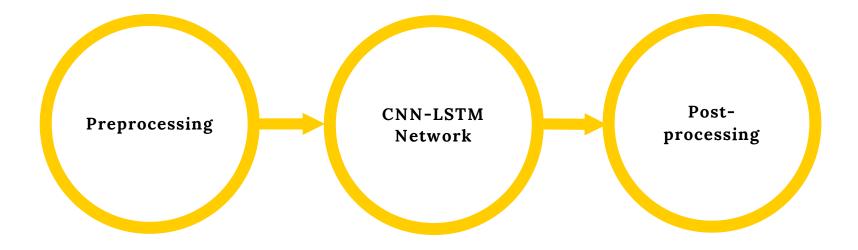
Studies based on CNNs [2],[3],[4]

- 2D images constructed from EEG segments as input
- Mediocre performance

Hand-crafted Features + RNN [5]

Suffers from the problems of hand-crafted feature extraction

Introduction
 Literature Review
 Methods and Material
 Results and Discussion
 Conclusion

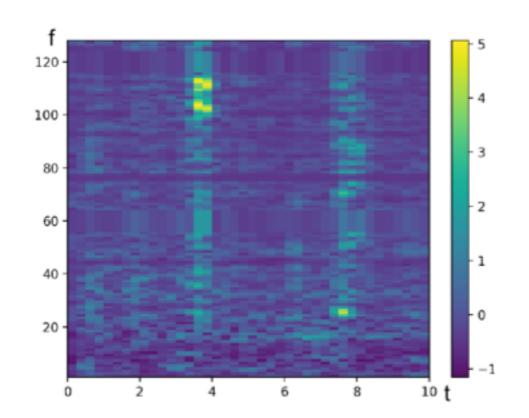


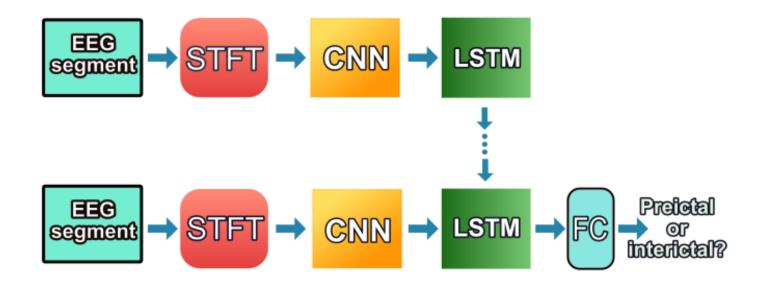
CHB-MIT Dataset*

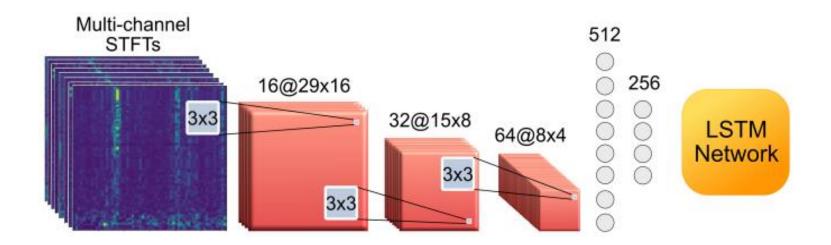
- Non-invasive continuous EEG recordings
- O 22 patients, 23 cases
- O 23 channels (most cases)
- Annotation contains the start and the end of each seizure
- Extra annotation for this work
 - **Preictal**: up to 30 minutes before each seizure onset
 - Interictal: recordings at least 2 hours away from seizures and their annotated preictal state
- * Dataset is available at https://www.physionet.org/pn6/chbmit/

- Split EEG recordings into sequence of segments
 Sequences of six 10-second overlapping segments
- Short-Time Fourier Transform
 - 1-second sliding window with 75% overlap
 - Removing DC frequency and frequencies related to power line noise
 - Standardizing each frequency along the temporal axis

An example of a standardized STFT image extracted from a 10-second EEG segment



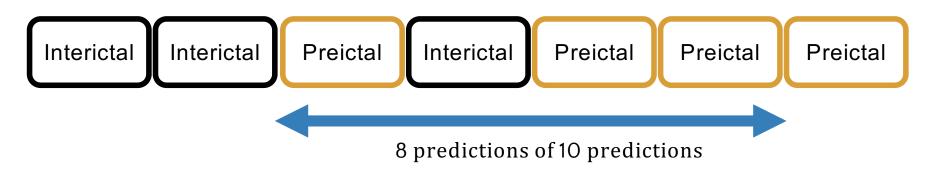


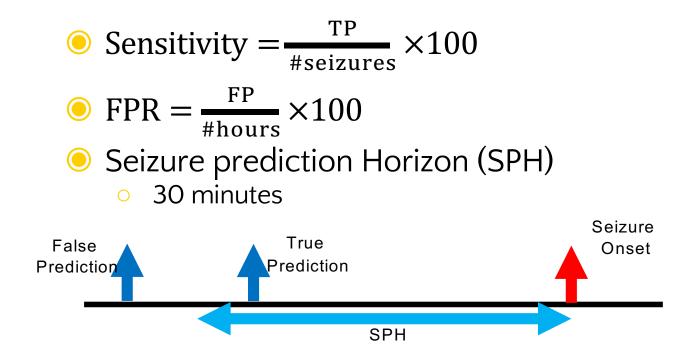


- Patient-specific training
- Pre-training of the CNN weights
- Train and test sets
 - Preictal data
 - Leave on seizure out
 - Interictal Data
 - 40% of non-seizure files as test set



Seizure Prediction Alarm





Introduction

- Literature Review
- Methods and Material
- Results and Discussion
- Conclusion

Sensitivity: 98.21 %

FPR: 0.13 /h

Prediction Time: 44.74 min.

Case	No. seizures	Sen. (%)	FPR (/h)	Pred. Time (Minutes)	
01	5	100.00	0.08	29.50	
02	2	100.00	0.06	50.00	
03	4	75.00	0.00	32.00	
05	3	100.00	0.00	35.00	
07	3	100.00	0.16	49.00	
09	3	100.00	0.00	103.00	
10	7	100.00	0.50	32.00	
17	3	100.00	0.22	43.00	
18	4	100.00	0.13	37.00	
19	2	100.00	0.00	46.00	
20	4	100.00	0.00	26.00	
21	4	100.00	0.50	51.92	
22	3	100.00	0.18	40.00	
23	2	100.00	0.18	52.00	

- Comparison with Related Works-

Year	Authors	Dataset	Method	Sen. (%)	FPR (/h)	Pred. Time (min)
2009	Mirowski et al [13]	Freiburg 15 cases	Bivariate features + CNN	71	0	-
2017	Truong et al [14]	CHB-MIT 13 cases	STFT + CNN	81.2	0.16	-
2017	Khan et al [15]	CHB-MIT 13 cases	Wavelet + CNN	83.3	0.14	5.81
2018	Tsiouris et al [16]	CHB-MIT 24 cases	Hand-crafted features + LSTM	99.8	0.02	-
2018	This work	CHB-MIT 14 cases	STFT + CNN- LSTM	98.2	0.13	44.74

IntroductionLiterature Review

- Methods and Material
- Results and Discussion

A novel method based on CNN-LSTM architecture

- Outperforming studies based on CNN
- Learning time-frequency features without human supervision

🖲 Future Work

- Optimal Preictal period for each patient
- Unsupervised methods based on temporal clustering

- [1] K. Gadhoumi, et al., "Seizure prediction for therapeutic devices: A review," Journal of neuroscience methods, vol. 260, pp. 270–282, 2016.
- [2] P. Mirowski, et al., "Classification of patterns of EEG synchronization for seizure prediction," Clinical neurophysiology, vol. 120, no. 11, pp. 1927–1940, 2009.
- [3] N. D. Truong, et al., "A Generalized Seizure Prediction with Convolutional Neural Networks for Intracranial and Scalp Electroencephalogram Data Analysis," arXiv preprint arXiv: 1707.01976, 2017.
- [4] H. Khan, et al., "Focal onset seizure prediction using convolutional networks," IEEE Transactions on Biomedical Engineering, 2017.
- [5] K. M. Tsiouris, et al., "A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals," Computers in biology and medicine, 2018.

M.shahbazi72@gmail.com