

6th IEEE Global Conference on Signal and Information Processing

This research is based upon work supported by the National Science Foundation under Grant No. ECCS-1737443

What matters the most? Optimal Quick Classification of Urban Issue Reports by Importance

Yasitha Warahena Liyanage^{*}, Mengfan Yao⁺, Christopher Yong⁺, Daphney–Stavroula Zois^{*}, Charalampos Chelmis⁺

*Electrical and Computer Engineering Department +Computer Science Department University at Albany, SUNY

IMAgINE Lab

29 November 2018

Motivation

- Civic engagement platforms
 - enable citizens to participate in collecting, analyzing and sharing knowledge about their local environments (e.g., measure air quality [Dutta2009])
 - interact with local governments to resolve urban issues, such as potholes and noise complaints (e.g. SeeClickFix [Mergel2012])

 Reported issues should be timely processed and addressed to maintain citizens' satisfaction with local governments

Related Work

- Prior work
 - ignores citizens' implicit endorsement of urban issues that are "important" to them (e.g., [Budde2014])
 - requires large-scale annotation to achieve good accuracy (e.g., [Hirokawa2017])
 - relies on fixed set of features (e.g., [Budde2014], [Hirokawa2017])
 - ignores scalability and timeliness (e.g., [Budde2014], [Hirokawa2017])

- Currently, reported issues are acknowledged and assessed by a city official for routing to appropriate agency
 - We propose to classify importance of urban issues <u>as fast</u> <u>as possible without sacrificing accuracy</u> using optimal subset of features in an <u>online fashion</u>

Problem Formulation

- Each urban issue *i* consists of
 - Title
 - Description
 - Address
 - Timestamp
 - Photo(s)
 - Comment(s)
 - Vote(s)

igstarrow feature vector $\mathbf{f}_i = [f_1, f_2, \dots, f_K]^T$

• Urban issue importance: # of votes and comments received

extract

- Feature cost $c_n > 0, n \in \{1, \dots, K\}$
- Misclassification costs $M_{kj} \ge 0, k \in \{\mathcal{H}, \mathcal{L}\}, j \in \{1, \dots, L\}$ with L decision choices

Optimization Problem

• Goal: minimize number of features used for inferring importance of an issue without sacrificing accuracy

Optimal Classification Strategy

• Rewrite the objective function using π_n

$$J(R, D_R) = \mathbb{E}\left\{\sum_{n=1}^R c_n + \sum_{j=1}^L \left(M_{\mathcal{H}j}\pi_R + M_{\mathcal{L}j}(1-\pi_R)\right) \mathbf{1}_{\{D_R=j\}}\right\}$$

a posteriori probability

• Optimal classification strategy

$$D_R^{optimal} = \arg\min_{1 \le j \le L} \left[M_{\mathcal{H}j} \pi_R + M_{\mathcal{L}j} (1 - \pi_R) \right]$$

Results to the smallest average cost

$$\widetilde{J}(R) \triangleq J(R, D_R^{optimal}) = \mathbb{E}\left\{\sum_{n=1}^R c_n + g(\pi_R)\right\}$$

where $g(\pi_R) \triangleq \min_{1 \leq j \leq L} \left[M_{\mathcal{H}j}\pi_R + M_{\mathcal{L}j}(1-\pi_R)\right]$

 $\pi_n \triangleq P(H_{\mathcal{H}}|f_1,\ldots,f_n)$

Optimal Stopping Strategy

• Optimal stopping strategy via dynamic programming

Last stage

$$\bar{J}_K(\pi_K) = g(\pi_K)$$

Any intermediate stage

$$\bar{J}_n(\pi_n) = \min \left[g(\pi_n), c_{n+1} + \sum_{f_{n+1}} A_n(f_{n+1}) \bar{J}_{n+1} \left(\frac{p(f_{n+1}|H_{\mathcal{H}})\pi_n}{A_n(f_{n+1})} \right) \right]$$
Optimal cost-to-go
Cost of continuing

where
$$A_n(f_{n+1}) \triangleq \pi_n p(f_{n+1}|H_{\mathcal{H}}) + (1-\pi_n)p(f_{n+1}|H_{\mathcal{L}})$$

ClvIC: <u>Classify urban Issues into Importance Categories</u>

Case Study: The SeeClickFix Platform

- Dataset
 - 2, 195 SeeClickFix issues
 - Metropolitan area surrounding Albany, NY
 - Jan 5, 2010 and Feb 10, 2018

- Features extracted from issues' title, description, address, and reported time
 - E.g., tokenized unigrams, logarithm of the number of words +1, exclamation marks +1, uppercase letters +1
- **Discretized importance** based on predefined thresholds
 - $H_{\mathcal{H}}$ if number of votes $V > \bar{V}$ and number of comments $C > \bar{C}$
 - Otherwise it belongs to $H_{\mathcal{L}}$
- To verify robustness, we considered 4 scenarios of varying thresholds $\, ar{V} \,$ and $\, ar{C} \,$

- Baselines
 - Bayesian detection method that uses all features
 - Feature selection method: SVM–FS [Hirokawa2017]
 - Dimensionality Reduction method: SVM–PCA
 - Kernel based method: SVM classifier
 - Tree based classifiers: Random forest and XG-boosting

- ClvIC achieves same error probability as Bayesian detection with all features using only **104 out of 2594 features** on average
- On average **96% reduction** in the number of **features** used

Results

Method	Accuracy	Precision	Recall	Avg. # feat.
CIvIC $(c = 0.25)$	0.794	0.785	0.818	1.05
CIvIC $(c = 10^{-1})$	0.811	0.789	0.854	1.29
CIVIC ($c = 10^{-2}$)	0.814	0.783	0.873	4.19
CIvIC $(c = 10^{-3})$	0.833	0.801	0.889	104.10
CIvIC $(c = 10^{-4})$	0.830	0.807	0.870	189.78
CIVIC ($c = 10^{-5}$)	0.832	0.811	0.867	244.99
CIvIC ($c = 10^{-6}$)	0.835	0.819	0.864	289.59
$\mathbf{CIvIC} \ (c = 0)$	0.835	0.819	0.864	350.34
Bayesian Detection	0.833	0.819	0.860	2,594
SVM-FS	0.746	0.701	0.810	20
SVM-linear	0.806	0.801	0.815	2,594
SVM-Gaussian	0.796	0.739	0.916	2,594
SVM-PCA	0.825	0.791	0.886	208
RF (depth= 5)	0.815	0.779	0.883	2,594
RF (depth=10)	0.820	0.784	0.886	2,594
XG Boosting	0.827	0.801	0.873	2,594

 ClvIC uses on average 104 and 289 features and achieves same highest accuracy (83.3%) and precision (81.9%) as Bayesian detection with all features (i.e., 96% and 88.8% reduction)

 SVM–Gauss achieves highest recall (91.6%), but 25 times as many features for a mere 3% improvement compared to ClvIC

Contributions & Future Directions

- Contributions
 - Optimal stopping theory framework to dynamically infer importance of incoming urban requests
 - Near-real-time algorithm that implements optimal solution
- Future directions
 - Extend framework to enable multi–valued importance recognition
 - Devise appropriate learning—to—rank approaches to dynamically order incoming urban issues requests
- Questions?

email: <u>yliyanage@albany.edu</u>

References

[Dutta2009] P. Dutta, P. M. Aoki, N. Kumar, A. Mainwaring, C. Myers, W. Willett, and A. Woodruff, *"Common sense: participatory urban sensing using a network of handheld air quality monitors,"* in 7th ACM conference on embedded networked sensor systems. ACM, 2009, pp. 349–350.

[Mergel2012] I. Mergel, "Distributed democracy: Seeclickfix.com for crowdsourced issue reporting," 2012.

[Budde2014] M. Budde, J. D. M. Borges, S. Tomov, T. Riedel, and M. Beigl, "*Improving Participatory Urban Infrastructure Monitoring through Spatio-Temporal Analytics*," in 3rd ACM SIGKDD International Workshop on Urban Computing. ACM, 2014.

[Hirokawa2017] S. Hirokawa, T. Suzuki, and T. Mine, "Machine Learning is Better Than Human to Satisfy Decision by Majority," in International Conference on Web Intelligence. 2017, pp. 694–701, ACM.

