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Introduction

Motivation

® Problem: semi-supervised clustering, i.e., splitting a dataset into
disjoint classes under the assumption that the cluster affiliation
Is known for certain data points

e Assumption: nodes within a cluster are similar and nodes from
different clusters are dissimilar

e Example social network: similarity links <> follower /friends
dissimilarity links <+ blocking or quoting behavior

e Question: how can dissimilarity information be incorporated into
total variation based clustering

Contributions
® Introduce the signed total variation

® Formulate semi-supervised two-class clustering with dissimilarity
pased on the signed total variation

e [ntroduce a suitable ¢; regularization to ensure reliable clustering
even when only few labels are known

® Develope a low-complexity ADMM-based algorithm

Modeling of the data

e Data is represented by a graph G(V, W) with node set
V = {1,...,N} and weighted adjacency matrix W € RY*¥

V" and V~ = V\V™ denote the clusters

e Modeling of the clusters: label vector x € RY with z; = 1 for
i€V andz;, = —1fori € V™

® Denote sampled nodes by L C V, LT ={i € L : x; = 1},
L_:{iGLI £EZ:—1}

Total variation based unsigned clustering

e Consider unsigned weight matrix W, W;; > 0

® A positive weight W;; > 0 models similarity between ¢ and j
® Min-cut approach determines V* and V= = V\V" via
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® Constrained total variation minimization:
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o If the min-cut problem (1) has a unique solution {V~, V*"}, then
(2) yields the equivalent solution
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Signed Clustering

Signed Laplacian
® Negative weight W;; < 0 models dissimilarity between 7 and j

e Signed graph Laplacian: L = D — W with the signed degree
matrix D = diag{dl, Cee CZN}, CZZ = ijl ‘WZ]’

® Induced Laplacian form:
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o For negative edge weights, (z; — sign(W;;)x;)?|Wy;| = (z; +
ZE]‘)2’VVZ']" will be small if L =~ — L

Signed total variation

e This motivates the new concept of the signed total variation:

Ixllvv 2> > |wi — sign(Wij)a;| Wil
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e The signed total variation ||x||1v is a semi-norm and convex

e For unbalanced graphs (contains a cycle with an odd number of
edges with negative weight) it is a norm

Regularization

® Problem 1: total variation minimization tends to declare (one
of ) the label sets L, L™ as clusters

® Problem 2: the signed total variation tends to assign zero values
since both |z; + x;| and |x; — x;| can be minimized by setting
X, — ZC]' —(
® Regularized signed total variation clustering problem:
min ||X + A\ 1+ o] + X 1l — x;
in oy + X)Ltz £ XY 1
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where
N(Z) — {] S V\L Z Wij > O},
N(A) = JN(i) for ACV,

e A

N™=NLONNLT), NT=N(LONN(L)
® Regularization terms with A~ and X" are introduced to assign
r; =1 (z; = —1) to the majority of nodes in N'* (N 7)

® Regularization parameters can be tuned automatically, see Al-
gorithm 1

Algorithm
® Propose augmented ADMM to solve (3)

® Resulting algorithm can be implemented in a distributed manner

4 )
Algorithm 1 Signed TV clustering with parameter tuning
Input: W, L7, L7, x5, (slightly smaller than 1)

Initialize: \™ =0, AT =0

1. repeat

> calculate minimizer x of (3)

3: M- ={ie N7 z; <0}

w2 M ={ieN": z;>0}

5 T = Milje - |2

6 T = minje - | T

7 a=70

g if M~ =0 or = < x,,, then
0 Increase A~, a =1

10: end if

11 if M™"=0 or 27 < 2,,;, then
12: increase A", a =1

13 end if

14: until a = O
Output: x

g J

Simulations

Setup

® Simulations on two-moon datasets with /N = 500 nodes

® Coordinates of each node generated from a random angle on a
center curve and Gaussian jitter (variance o* = 0.09)

e Graph generated as kNN graph with & = 10 neighbors and
Gaussian kernel for edge weights (parameter o; = 0.6)

e )/ samples drawn randomly while ensuring at least one known
label from each cluster

e /[, randomly chosen dissimilarity edges between pairs of nodes
from different clusters

lllustrative example

e Different colors represent different clusters

e Sampled nodes represented by dark colors

® Dissimilarity edges represented by dashed lines

Ground truth

Unsignhed total variation

Signed total variation

Laplacian regularized least squares with dissimilarity (parameters de-
termined by grid search) [Goldberg et al., PMLR’07]

Monte Carlo simulations

Error rates in percent (mean and standard deviation)

Algorithm 1 LapRLSd

M =2 M=5 M=10 M =2 M =5 M =10

L=0 73%£125 4.0+£9.0 1.8£5.1
L=5 30£91 12+3510+24
L=10 144+£6.0 09=x=19 0.7x£0.7

13.6 9.2 128 =8.8 6.1 == 6.2
84x72 58x47 3.4+L£3.2
5.0x54 3.6x35 2.5=x2.1

Discussion
® Incorporation of dissimilarity substantially improves performance

e [otal variation is directly connected to a minimum cut and there-
fore outperforms Laplacian based algorithms

e Most state of the art algorithms have free parameters

® Proposed algorithm has no free parameters
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