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Why Estimating Privately

Learning algorithms or Statistical inference always perform on
sensitive dataset.

Most learning algorithms are not private, which may be caused
privacy breach and an adversary could infer data record! Even they
are complex. [Calandrino et.al., 2011]
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Privacy in Statistical Databases

Two Conflict Goal: Privacy v.s Utility

Anonymization is unreliable [Narayanan-Shmatikov08],[Korolova11]...
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Differential Privacy

Differential Privacy guarantees that the outcome distribution of the
computation does not change significantly when a single record
changes its data.
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Differential Privacy
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Definition of Differential Privacy

Definition (Differentially Private)

A randomized algorithm A is (ε, δ)-differentially private if for all
neighboring datasets D,D ′ ∈ X n and for all events S in the output space
of A, the following holds

Pr(A(D) ∈ S) ≤ eεPr(A(D ′) ∈ S) + δ.

when δ = 0, A is ε-differentially private.
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Problem Definition

{x1, x2, · · · , xn} ∼ N (0,Σ), where Σ ∈ Rd×d .

If n ≥ d , one can optimize

Θ∗ = S−1 = arg min
Θ∈Sd++

− log det Θ + 〈S ,Θ〉,

where S = 1
n

∑n
i=1 xix

T
i is the empirical covariance.

However, this will be ill-posed in the high dimensional case p ≥ n.

We borrow an idea in LASSO and use an `1 norm regularization in
the objective function, which assumes that Θ∗ is sparse.

the objective function becomes the following:

Θ∗ρ = arg min
Θ∈Sd++

{− log det Θ + 〈S ,Θ〉+ ρ‖Θ‖1}, (1)

where ρ > 0 is the penalty parameter, 〈S ,Θ〉 = tr(SΘT ), and
‖Θ‖1 =

∑
i ,j |Θi ,j |.
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Problem Definition (Contin.)

The problem has many applications in machine learning, signal
processing and compotational biology.

Also a natural way for parameterizing the Gaussian graphical model

Thus, our goal is to get a private matrix Θpriv which is close to the
underlying sparse inverse covariance.

make the error ‖Θpriv −Θ∗‖F as small as possible.
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Method 1: Output Perturbation

The first method is inspired by the redsensitivity of the optimization
problem.

The sensitivity of an algorithm A (under F -norm) is definied as

max
D∼D′

‖A(D)−A(D ′)‖F .

Based on sensitivity, one can add random noise to ensure ε or (ε, δ)
differnential privacy.

We consider the case of adding Symmetric Laplacian Matrix and
Wishard Matrix.
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Output Perturbation (Contin.)

What is Wishart distribution?

Suppose x1, x2, · · · , xm ∈ Rd ∼ N (0,C ). Then we call
S =

∑m
i=1 xix

T
i ∼ Wd(m,C ).
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Results

Algorithm 1 is ε-differenctially private.

We have the following upper bound of error

‖Θ̃∗ρ −Θ∗ρ‖F ≤ O(
log d

δ d
4

nερ2
),

where Θ∗ρ is the optimal solution of the original problem.

Quite large in the high dimensional case. Can we furtherly reduce the
error?
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Method 2: Covariance Perturbation

Recall the non-private black box algorithm.

Our second method is perturbating covariance directly.
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Covariance Perturbation (Contin.)

The key point is how to choose the random matrix N.

ε-differential privacy: Symmetric Laplace Matrix/ Wishart Matrix.

(ε, δ)-differential privacy: Symmetric Gaussian Matrix/ Wishart
Matrix.
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Results: ε-DP

Theorem

For any ε > 0, if N is a symmetric Laplacian matrix N whose entries are
i.i.d drawn from Lap(0, 2d

nε ), then it is ε-differentially private. Moreover,
the following holds

‖Θ̂∗ρ −Θ∗ρ‖F
max{‖Θ∗ρ‖2

2, ‖Θ̂∗ρ‖2
2}
≤ O(

d2

nε
).

Theorem

In Algorithm 2, for any ε > 0, if choose P =Wd(d + 1,C ) with
C = 3

2εn Id , it is ε-differentially private. Moreover, the following holds

‖Θ̂∗ρ −Θ∗ρ‖F
max{‖Θ∗ρ‖2

2, ‖Θ̂∗ρ‖2
2}
≤ O(

log d
δ′ d

3
2

nε
).
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Results: (ε, δ)-DP

Theorem

If we choose P =Wd(m,C ) with C = 1
n Id and m = d + 14

ε2 ln( 4
δ ) in

Algorithm 2, it is (ε, δ)-differentially private. Moreover, we have

‖Θ̂∗ρ −Θ∗ρ‖F
max{‖Θ∗ρ‖2

2, ‖Θ̂∗ρ‖2
2}
≤ O(

ln(1/δ) ln(1/δ′)d
3
2

nε2
).

Theorem

If N is a symmetric Gaussian matrix N whose entries are i.i.d drawn from

N (0, β2), where β =

√
2 ln( 1.25

δ
)

nε , then it is (ε, δ)-differentially private.

‖Θ̂∗ρ −Θ∗ρ‖F
max{‖Θ∗ρ‖2

2, ‖Θ̂∗ρ‖2
2}
≤ O(

d
√

ln( 1
δ )

εn
).
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Conclusion

For ε-DP, covariance perturbation is better than output perturbation.

For ε-DP, adding Wishart matrix is better than adding symmetric
Laplacian matrices.

The error bound of the (ε, δ)-differentially private algorithm with
covariance perturbation strategy is lower than it under ε-differential
privacy.

Adding symmetric Gaussian noise will achieve the lowest error.
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Experimental Results
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Thank you!

Questions?
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