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Why Estimating Privately

@ Learning algorithms or Statistical inference always perform on
sensitive dataset.
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Why Estimating Privately

@ Learning algorithms or Statistical inference always perform on
sensitive dataset.

@ Most learning algorithms are not private, which may be caused
privacy breach and an adversary could infer data record! Even they
are complex. [Calandrino et.al., 2011]
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Privacy in Statistical Databases
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Privacy in Statistical Databases

A— query 1
Trusted _ answerl Users

: (government,
query T researchers,

CCO answer T Mmarketers, ...)
random coins

Curator

@ Two Conflict Goal: Privacy v.s Utility

@ Anonymization is unreliable [Narayanan-Shmatikov08],[Korolovall]...
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D] ntial Privacy

o Differential Privacy guarantees that the outcome distribution of the
computation does not change significantly when a single record
changes its data.
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Differential Privacy

2 — Algorithm — F'

IS STUT ) pe—

adversary

Differential Privacy

Di Wang, Mengdi Huai and Jinhui Xu State Differentially Private Sparse Inverse Covarianc November 20, 2018 7/ 22



Definition of Differential Privacy

Definition (Differentially Private)

A randomized algorithm A is (e, §)-differentially private if for all
neighboring datasets D, D’ € X" and for all events S in the output space

of A, the following holds

Pr(A(D) € S) < e“Pr(A(D") € S) + 4.

when 6 = 0, A is e-differentially private.
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Problem Definition

o {x1,x0,  ,xn} ~N(0,%), where ¥ € RI*9,

Di Wang, Mengdi Huai and Jinhui Xu State Differentially Private Sparse Inverse Covarianc November 20, 2018



Problem inition

o {x1,x0,  ,xn} ~N(0,%), where ¥ € RI*9,
@ If n > d, one can optimize

©*=S1=arg min —logdet® + (S5,0),
0esd,

1 n T .. .
where S = - > 7, x;x;' is the empirical covariance.
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Problem Definition

{x1,x2,+ ,xp} ~ N(0,X), where ¥ € R9*4
If n > d, one can optimize

©*=S1=arg min —logdet® + (S5,0),
0esd,
where § = %27:1 x;x;" is the empirical covariance.
@ However, this will be ill-posed in the high dimensional case p > n.

@ We borrow an idea in LASSO and use an ¢; norm regularization in
the objective function, which assumes that ©* is sparse.

@ the objective function becomes the following:

@;:arg mig {—Iogdet@+(5,@>+PH@Hl}, (1)

0es?,

where p > 0 is the penalty parameter, (S,0) =tr(SOT), and
[©]1 = ZU ‘@iJ‘-
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Problem Definition (Contin.)

@ The problem has many applications in machine learning, signal
processing and compotational biology.
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@ The problem has many applications in machine learning, signal
processing and compotational biology.

@ Also a natural way for parameterizing the Gaussian graphical model

e Thus, our goal is to get a private matrix ©P™ which is close to the
underlying sparse inverse covariance.

o make the error [|©P" — ©*||r as small as possible.
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Method 1: Output Perturbation

@ The first method is inspired by the redsensitivity of the optimization
problem.
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Method 1: Output Perturbation

@ The first method is inspired by the redsensitivity of the optimization
problem.

@ The sensitivity of an algorithm A (under F-norm) is definied as
D) — A(D)||F.
max [A(D) — A(D)]F

@ Based on sensitivity, one can add random noise to ensure € or (e, )
differnential privacy.

@ We consider the case of adding Symmetric Laplacian Matrix and
Wishard Matrix.
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Output Perturbation (Contin.)

@ What is Wishart distribution?
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Output Perturbation (Contin.)

@ What is Wishart distribution?

@ Suppose xl,xz, co Xm € RY ~ N(0, C). Then we call
S=3"xix] ~Wy(m,C).

Algorithm 1 Output Perturbation

Input: D = {z},, S = L3 zial, where
the f3-norm of each row z; is bounded by 1, p >
0.
1: Compute ©) = argmingcgs {—logdet © + (5,0) +
plOl1},
2: return ©) = O, + N, where N ~ Wy(d + 1,C),C =
dz
nep? Id
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@ Algorithm 1 is e-differenctially private.
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@ Algorithm 1 is e-differenctially private.
@ We have the following upper bound of error

log 5d4

16, — O llF < O(—25-
nep?

),

where ©F is the optimal solution of the original problem.
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@ Algorithm 1 is e-differenctially private.
@ We have the following upper bound of error

log 5d4

16, — O llF < O(—25-
nep?

),

where ©F is the optimal solution of the original problem.

@ Quite large in the high dimensional case. Can we furtherly reduce the
error?
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Method 2: Covariance Perturbation

@ Recall the non-private black box algorithm.
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Method 2: Covariance Perturbation

@ Recall the non-private black box algorithm.

@ Our second method is perturbating covariance directly.

Algorithm 2 Covariance Perturbation

Input: D = {z;}]_,, where the {5-norm of each row x;
is bounded by 1, p > 0. ¢,5 > 0 are the privacy parame-
ters.

1 Let S = L3 22T sample a symmetric matrix N €
R P, which makes S + N e- or (¢, §)-differentially
private. Let S = S + N.

2: Return (;)"; = argmineesi+{—1og det® + (S,0) +

plIO1}-
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Covariance Perturbation (Contin.)

@ The key point is how to choose the random matrix N.
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Covariance Perturbation (Contin.)

@ The key point is how to choose the random matrix N.
o c-differential privacy: Symmetric Laplace Matrix/ Wishart Matrix.

o (e, 0)-differential privacy: Symmetric Gaussian Matrix/ Wishart
Matrix.

Di Wang, Mengdi Huai and Jinhui Xu State Differentially Private Sparse Inverse Covarianc November 20, 2018 16 / 22



Results: e-DP

For any € > 0, if N is a symmetric Laplacian matrix N whose entries are
i.i.d drawn from Lap(0, 24

, ©%), then it is e-differentially private. Moreover,
the following holds

19, = &3lle__ _ o
max{|©;13, ©513} ~ " e
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Results: e-DP

For any € > 0, if N is a symmetric Laplacian matrix N whose entries are
i.i.d drawn from Lap(0, %) then it is e-differentially private. Moreover,
the following holds

19; — &l
max{[| O3, 16;13 } -

(*)

v
Theorem

In A/gorithm 2, for any € > 0, if choose P = Wy(d + 1, C) with
C = 26n Iy, it is e-differentially private. Moreover, the following holds

Nlw

19; G5l _ o los
max{[|;13 6518} ~ e

).

Di Wang, Mengdi Huai and Jinhui Xu State Differentially Private Sparse Inverse Covarianc November 20, 2018 17 / 22



Results: (€,0)-DP

If we choose P = Wy(m, C) with C = +lq and m = d + %3 In(3) in
Algorithm 2, it is (e, §)-differentially private. Moreover, we have

16, = S5llr__ _ o In(1/)In(1/9)d?
max{[| @[3, 163113} ~
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Results: (€,0)-DP

If we choose P = Wy(m, C) with C = +lq and m = d + %3 In(3) in
Algorithm 2, it is (e, §)-differentially private. Moreover, we have

In(1/5) In(1/6")d>

ne2

16, - S5llr__ o
max{HGZH%, HGZ“%} B

v
Theorem

If N is a symmetric Gaussian matrix N whose entries are i.i.d drawn from

(12
N(0, %), where B = y2In)

).

o
ne

, then it is (e, d)-differentially private.

A\ * 1
”ep_epHF <0 d ln(5)

max{[|©713, 19513} ~ en
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Conclusion

@ For e-DP, covariance perturbation is better than output perturbation.

@ For ¢-DP, adding Wishart matrix is better than adding symmetric
Laplacian matrices.

@ The error bound of the (¢, d)-differentially private algorithm with
covariance perturbation strategy is lower than it under e-differential
privacy.

@ Adding symmetric Gaussian noise will achieve the lowest error.
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Experimental Results

Table 1: Performance comparisons of the e-differentially private
algorithms on both synthetic and real-world datasets.

Synthetic Datasets

Real-world Datasets

€ Methods r=0.5 r=1.0 r =15 Colon Parkinson’s
Wishart 0.993 0.9918 0.9914 0.995 0.9140
0.5 Output NA NA NA NA NA
Laplace 101.4 52.85 3542 190.57 9.950
Wishart 0.986 0.9863 0.9856 0.993 0.8899
1.0 Output NA NA NA NA NA
Laplace 49.44 25.41 16.83 95.01 4.690
Wishart 0.9817 0.9815 0.9806 0.9907 0.8796
1.5 Output NA NA NA NA NA
Laplace 32.30 16.41 10.76 63.67 3913
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Experimental Results

Mengdi Huai a

Table 2: Performance comparisons of the (¢, §)-differentially private
algorithms on both synthetic and real-world datasets.

Synthetic Datasets Real-world Datasets

€ Methods r=0.5 r=1.0 r=1.5 Colon Parkinson’s

Wishart 0.9999 0.9997 0.9993 1.636 1.00
0.5 SQLU NA NA NA NA 0.7419
G i 0.1285 0.1607 0.1759 0.3039 0.1527
Wishart 0.9982 0.9947 0.9906 1.1155 0.990
1.0 SQLU NA NA NA NA 0.7318
G i 0.1254 0.1605 0.1737 0.1081 0.1514

Wishart 0.9954 0.9895 0.9837 1.0474 0.9992
1.5 SQLU NA NA NA NA 0.7065
Gaussian 0.1242 0.1585 0.1701 0.0833 0.1474
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Thank you!

Questions?
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