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Epilepsy

§ The fourth most common 

neurological disorder 

§ Affecting about 65 million 

people around the world 

§ Sudden seizures

Motivation

Seizure Prediction

§ Uncontrollable seizures in 

about 
!
" of the patients

§ The importance of seizure 

prediction systems

§ EEG signals
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Information obtained from www.epilepsy.com/learn/about-epilepsy-basics
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Epilepsy Temporal States

Preictal

Ictal

Interictal
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Post-ictal



Challenges

◉ complexity and variability preictal patterns

○ different patients 

○ different seizures of the same patient

◉ Preictal Labels
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Epileptic EEG Signals
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https://www.epilepsydiagnosis.org/seizure/absence-typical-eeg.html

Seizure



Deep Neural Networks

◉ Proved to be powerful in many areas

◉ Convolutional Neural Networks (CNN)

○ Extracting the best features from the best channels 

using trainable filters

◉ Recurrent Neural Networks (RNN)

○ Sequences

○ Long Short-term Memory (LSTM)
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◉ Studies based on hand-crafted Features [1]
○ Complex and time consuming feature extraction 

and selection

◉ Studies based on CNNs [2],[3],[4]
○ 2D images constructed from EEG segments as input

○ Mediocre performance

◉ Hand-crafted Features + RNN [5]
○ Suffers from the problems of hand-crafted feature 

extraction
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Literature Review
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The Whole Picture
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Preprocessing
Post-

processing
CNN-LSTM

Network



Dataset

◉ CHB-MIT Dataset*
o Non-invasive continuous EEG recordings

o 22 patients, 23 cases
o 23 channels (most cases)

o Annotation contains the start and the end of each seizure

◉ Extra annotation for this work
○ Preictal: up to 30 minutes before each seizure onset

○ Interictal: recordings at least 2 hours away from seizures 

and their annotated preictal state

13* Dataset is available at https://www.physionet.org/pn6/chbmit/



Preprocessing

◉ Split EEG recordings into sequence of segments

◉ Sequences of six 10-second overlapping segments 

◉ Short-Time Fourier Transform

◉ 1-second sliding window with 75% overlap

◉ Removing DC frequency and frequencies related to 

power line noise 

◉ Standardizing each frequency along the time axis
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Preprocessing

15

An example of a standardized
STFT image extracted from a
10-second EEG segment



Proposed CNN-LSTM Architecture 
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CNN Architecture
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Network Training

◉ Patient-specific training

◉ Pre-training of the CNN weights

◉ Train and test sets

○ Preictal data

■ Leave one seizure out

○ Interictal Data

■ 40% of non-seizure files as test set
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Post-Processing
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Interictal Interictal Preictal Interictal Preictal Preictal Preictal

8 predictions out of 10 predictions

Seizure Prediction Alarm



Evaluation

◉ Sensitivity = *+
#-./012.- ×100

◉ FPR = 9+
#:;12- ×100

◉ Seizure prediction Horizon (SPH)
○ 30 minutes
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Results
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Case No. seizures Sen. (%) FPR (/h) Pred. Time (Minutes)

01 5 100.00 0.08 29.50

02 2 100.00 0.06 50.00

03 4 75.00 0.00 32.00

05 3 100.00 0.00 35.00

07 3 100.00 0.16 49.00

09 3 100.00 0.00 103.00

10 7 100.00 0.50 32.00

17 3 100.00 0.22 43.00

18 4 100.00 0.13 37.00

19 2 100.00 0.00 46.00

20 4 100.00 0.00 26.00

21 4 100.00 0.50 51.92

22 3 100.00 0.18 40.00

23 2 100.00 0.18 52.00

Sensitivity:
98.21 %

FPR: 0.13 /h

Prediction Time:
44.74 min.



Comparison with Related Works
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Year Authors Dataset Method
Sen.
(%)

FPR
(/h)

Pred. 
Time
(min)

2009
Mirowski et 

al [13]
Freiburg
15 cases

Bivariate 
features + CNN 71 0 -

2017 Truong et 
al [14]

CHB-MIT
13 cases STFT + CNN 81.2 0.16 -

2017
Khan et al 

[15]
CHB-MIT
13 cases Wavelet + CNN 83.3 0.14 5.81

2018
Tsiouris et 

al [16]
CHB-MIT
24 cases

Hand-crafted 
features + 

LSTM
99.8 0.02 -

2018 This work
CHB-MIT
14 cases

STFT + CNN-
LSTM 98.2 0.13 44.74
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Conclusion

◉ A novel method based on CNN-LSTM architecture
○ Outperforming studies based on CNN

○ Learning time-frequency features without human 

supervision

◉ Future Work
○ Optimal Preictal length for each patient

○ Unsupervised methods based on temporal clustering 
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Any questions ?

◉ M.shahbazi72@gmail.com

Thank You!
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