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• Cooperative relaying are expected to play an important role in 5G systems, e.g.,

multihop use cases of V2X systems

• Assuming a simplified KRST coding scheme, the signals received at destination

satisfy a (K + 3)th-order generalized nested PARAFAC tensor model

• The generalized nested PARAFAC model can be decomposed into K + 1

third-order PARAFAC models

• Assuming the coding matrices known, a closed-form semiblind receiver based

on rank-one matrix approximations is derived for jointly estimating the

information symbols and the individual channels
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System Model

One-way MIMO Multihop Relay Cooperative System
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Figure 1: System model with K relays.

• Mk denotes the number of antennas at node k
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• Hk+1 ∈ CMk+1×Mk , k = 0, · · · ,K, denotes the channel between nodes k and

k + 1

• Source and relay nodes encodes the received signal with a KRST following the

AF protocol

• X̃ = X +N is the noisy received signal tensor
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System Model: Two Relays Scenario

Source

. . .

M0

Encoded symbols

X
(0)
M0×P0N

= (G0 ⋄ S)
T

(1)

• The symbol matrix S ∈ CN×M0 containing N data-streams composed of M0

symbols is multiplexed by M0 transmit antennas at the source

• Source and relays encode the signals with a KRST coding matrix

Gk ∈ CPk×Mk , chosen as a truncated DFT matrix GT
kG

∗

k = IMk
,

(k = 0, · · · ,K)
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System Model: Two Relays Scenario

First Hop

Source

. . .

M0

Relay 1

. . .

M1

H1

Received signal at Relay-1

X̃
(1)
M1×P0N

= H1 (G0 ⋄ S)
T +N

(1)
M1×P0N

• Signals received at relay-1 define a third-order tensor X̃ (1) ∈ CM1×P0×N

satisfying a PARAFAC model ‖H1,G0,S;M0‖

• X̃
(1)
M1×P0N

represents the flat mode-1 unfolding of X̃ (1)
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Second Hop
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. . .
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Received signal at Relay-2

X̃
(2)
M2×P1P0N

= H2

(

G1 ⋄ X̃
(1)
P0N×M1

)T

+H2

(

G1 ⋄N
(1)
P0N×M1

)T

+N
(2)
M2×P1P0N

1

• The signals received at relay-2 define a fourth-order tensor

X̃ (2) ∈ CM2×P1×P0×N

• X̃
(2)
M2×P1P0N

represents the flat mode-1 unfolding of X̃ (2)

1From now on, a noiseless formulation5/17



System Model: Two Relays Scenario

Third Hop

Source

. . .

M0

Relay 1

. . .

M1

Relay 2

. . .

M2

Destination

. . .

M3

H1 H2 H3

Received signal at Destination

X
(3)
M3×P2P1P0N

= H3

(

G2 ⋄X
(2)
P1P0N×M2

)T

• The signals received at the destination define a fifth-order tensor

X (3) ∈ CM3×P2×P1×P0×N

• X
(3)
M3×P2P1P0N

is the flat mode-1 unfolding of tensor X (3) following a

PARAFAC decomposition
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Third Hop

Source

. . .

M0

Relay 1

. . .

M1

Relay 2

. . .

M2

Destination

. . .

M3

H1 H2 H3

Received Signal at Destination

• Replacing X
(2)
P1P0N×M2

and then X
(1)
P0N×M1

, tensor X (3) also satisfies a

generalized nested PARAFAC decomposition

X
(3)
M3×P2P1P0N

= H3

[

G2 ⋄
(
G1 ⋄ (G0 ⋄ S)HT

1

)
HT

2

]T

6/17



Received Signal at Destination
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• Another unfolding of the PARAFAC model X (3) ∈ CM3×P2×P1×P0×N is

X
(3)
M3P2×P1P0N

= (H3 ⋄G2)X
(2)
M2×P1P0N

.
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Closed-Form Semiblind Receiver

Receiver Equations

• The fifth-order nested PARAFAC model is decomposed into three third-order

PARAFAC models from X (3), H(07→3), and H(17→3) as

X
(3)
NM3P2P1×P0

=
(

S⋄H
(07→3)
M3P2P1×M0

)

GT
0 = RGT

0 (1)

H
(07→3)
M3P2M0×P1

=
(

H
(17→3)
M3P2×M1

⋄HT
1

)

GT
1 = QGT

1

H
(17→3)
M3M1×P2

=
(
H3 ⋄H

T
2

)
GT

2 = ZGT
2
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X
(3)
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=
(

S⋄H
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)

GT
0 = RGT

0 (1)

H
(07→3)
M3P2M0×P1

=
(

H
(17→3)
M3P2×M1

⋄HT
1

)

GT
1 = QGT

1

H
(17→3)
M3M1×P2

=
(
H3 ⋄H

T
2

)
GT

2 = ZGT
2

• As GT
k G

∗

k = IMk
for k = 0, · · · ,K allows us to derive a three-step closed-form

semiblind receiver to estimate the symbol matrix S and the channel matrices

Hk, k = 1, 2, 3
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Closed-Form Semiblind Receiver

Receiver Equations

• Using the column orthonormality of Gk, k = 0, 1, 2, the least squares (LS)

estimates of (R,Q,Z) can be successively calculated as

R̂ = X
(3)
NM3P2P1×P0

G∗

0
∼=

(

S⋄H
(07→3)
M3P2P1×M0

)

, (2)

Q̂ = Ĥ
(07→3)
M3P2M0×P1

G∗

1
∼=

(

H
(17→3)
M3P2×M1

⋄HT
1

)

, (3)

Ẑ = Ĥ
(17→3)
M3M1×P2

G∗

2
∼=

(
H3 ⋄H

T
2

)
, (4)

11/17



Closed-Form Semiblind Receiver

Receiver Equations

• Using the column orthonormality of Gk, k = 0, 1, 2, the least squares (LS)

estimates of (R,Q,Z) can be successively calculated as

R̂ = X
(3)
NM3P2P1×P0

G∗

0
∼=

(

S⋄H
(07→3)
M3P2P1×M0

)

, (2)

Q̂ = Ĥ
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(17→3)
M3M1×P2

G∗

2
∼=

(
H3 ⋄H

T
2

)
, (4)

• From the LS estimate R̂, the factors S and H
(07→3)
M3P2P1×M0

are found by the

Khatri-Rao factorization (KRF) algorithm

11/17



Closed-Form Semiblind Receiver

Receiver Equations

• Using the column orthonormality of Gk, k = 0, 1, 2, the least squares (LS)

estimates of (R,Q,Z) can be successively calculated as

R̂ = X
(3)
NM3P2P1×P0

G∗

0
∼=

(

S⋄H
(07→3)
M3P2P1×M0

)

, (2)

Q̂ = Ĥ
(07→3)
M3P2M0×P1

G∗

1
∼=

(

H
(17→3)
M3P2×M1

⋄HT
1

)

, (3)
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• Finally, Ĥ
(17→3)
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is reshaped as Ĥ
(17→3)
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to compute Ẑ, from which the

channels (H2,H3) are extracted using again the KRF algorithm
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General Case K relays

• The signals received at the destination defines a (K + 3)th-order tensor

X̃ (K+1) ∈ CMK+1×PK×PK−1×···×P0×N , with flat mode-1 unfolding as

X
(K+1)
MK+1×PKPK−1···P0N

= HK+1

(

GK ⋄X
(K)
PK−1···P0N×MK

)T
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=
(

S ⋄H
(07→K+1)
MK+1PK ···P1×M0

)

GT
0

• From H
(07→K+1)
MK+1PK ···P1×M0

we can define other K third-order PARAFAC models

to estimate the individual channel hops as

H
(k 7→K+1)
MK+1PK ···Pk+2Mk×Pk+1

= (H
(k+17→K+1)
MK+1PK ···Pk+2×Mk+1

⋄HT
k+1)G

T
k+1
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averaged over 4× 104 Monte Carlo runs.

• Each run corresponds to a realization of all channel and symbol matrices, and

noise tensors

• The transmitted symbols are randomly drawn from a unit energy QAM symbol

alphabet

• We assume Hk+1, k = 0, · · · ,K, i.i.d. zero-mean circularly-symmetric complex

Gaussian entries with variances given by 1/ηβMk, where

η = d/d0 = 1/(K + 1) and β = 3, d denoting the distance between two

consecutive nodes, and d0 the distance between the source and the destination
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Simulation Results

SER: 4-QAM, K = 1 : 3 relays
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Figure 2: SER for three different numbers of relays and two system configurations.
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Simulation Results

NMSE: 4-QAM, K = 2 relays, Pk = Mk = N = 3
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Figure 3: NMSE of the individual channels with K = 2.
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decomposing this model into K + 1 third-order PARAFAC models

• Diversity gains are obtained as the number of relays increases from K = 1 to

K = 3 due to the KRST coding at each relay. Increasing the values of N , Pk

and Mk from 2 to 4 also leads to better SER performance

• Extensions of this work include the exploitation of the noise structure to

develop a tensor-based receiver using a minimum-mean-square-error (MMSE)

algorithm, and the case of orthogonal frequency division multiplexing (OFDM)

relay systems
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