# Sequential Closed-Form Semiblind Receiver for Space-Time Coded Multihop Relaying Systems

IEEE Signal Processing Letters (Volume: 24, Issue: 12, Dec. 2017)

W. C. Freitas $^{(1)}$ , G. Favier $^{(2)}$  and A. L. F. de Almeida $^{(1)}$ 

walter@gtel.ufc.br November 19, 2018

> <sup>(1)</sup>Wireless Telecom Research Group Federal University of Ceará http://www.gtel.ufc/

(2) Laboratoire d'Informatique, Signaux et Systèmes Université de Nice – Sophia Antipolis http://www.i3s.unice.fr/



- Introduction
- System model
- Proposed closed-form semiblind receiver
- Simulation assumptions and results
- Conclusions and perspective
- References

• Cooperative relaying are expected to play an important role in 5G systems, e.g., multihop use cases of V2X systems

- Cooperative relaying are expected to play an important role in 5G systems, e.g., multihop use cases of V2X systems
- Assuming a simplified KRST coding scheme, the signals received at destination satisfy a (K+3)th-order generalized nested PARAFAC tensor model

- Cooperative relaying are expected to play an important role in 5G systems, e.g., multihop use cases of V2X systems
- Assuming a simplified KRST coding scheme, the signals received at destination satisfy a (K+3)th-order generalized nested PARAFAC tensor model
- The generalized nested PARAFAC model can be decomposed into K+1 third-order PARAFAC models

- Cooperative relaying are expected to play an important role in 5G systems, e.g., multihop use cases of V2X systems
- Assuming a simplified KRST coding scheme, the signals received at destination satisfy a (K+3)th-order generalized nested PARAFAC tensor model
- The generalized nested PARAFAC model can be decomposed into K+1 third-order PARAFAC models
- Assuming the coding matrices known, a closed-form semiblind receiver based on rank-one matrix approximations is derived for jointly estimating the information symbols and the individual channels



Figure 1: System model with K relays.

•  $M_k$  denotes the number of antennas at node k



Figure 1: System model with K relays.

- $M_k$  denotes the number of antennas at node k
- $\mathbf{H}_{k+1} \in \mathbb{C}^{M_{k+1} \times M_k}$ ,  $k = 0, \cdots, K$ , denotes the channel between nodes k and k+1



Figure 1: System model with K relays.

- $M_k$  denotes the number of antennas at node k
- $\mathbf{H}_{k+1} \in \mathbb{C}^{M_{k+1} \times M_k}$  ,  $k=0,\cdots,K$  , denotes the channel between nodes k and k+1
- Source and relay nodes encodes the received signal with a KRST following the AF protocol



Figure 1: System model with K relays.

- $M_k$  denotes the number of antennas at node k
- $\mathbf{H}_{k+1} \in \mathbb{C}^{M_{k+1} \times M_k}$ ,  $k = 0, \cdots, K$ , denotes the channel between nodes k and k+1
- Source and relay nodes encodes the received signal with a KRST following the AF protocol
- $\tilde{\mathcal{X}} = \mathcal{X} + \mathcal{N}$  is the noisy received signal tensor



#### **Encoded symbols**

$$\mathbf{X}_{M_0 \times P_0 N}^{(0)} = \left(\mathbf{G}_0 \diamond \mathbf{S}\right)^T \tag{1}$$

- The symbol matrix  $\mathbf{S} \in \mathbb{C}^{N \times M_0}$  containing N data-streams composed of  $M_0$  symbols is multiplexed by  $M_0$  transmit antennas at the source
- Source and relays encode the signals with a KRST coding matrix  $\mathbf{G}_k \in \mathbb{C}^{P_k \times M_k}$ , chosen as a truncated DFT matrix  $\mathbf{G}_k^T \mathbf{G}_k^* = \mathbf{I}_{M_k}$ ,  $(k = 0, \cdots, K)$

#### **First Hop**



#### Received signal at Relay-1

$$\tilde{\mathbf{X}}_{M_{1}\times P_{0}N}^{(1)} = \mathbf{H}_{1} \left( \mathbf{G}_{0} \diamond \mathbf{S} \right)^{T} + \mathbf{N}_{M_{1}\times P_{0}N}^{(1)}$$

- Signals received at relay-1 define a third-order tensor  $\tilde{\mathcal{X}}^{(1)} \in \mathbb{C}^{M_1 \times P_0 \times N}$  satisfying a PARAFAC model  $\|\mathbf{H}_1, \mathbf{G}_0, \mathbf{S}; M_0\|$
- $ilde{\mathbf{X}}_{M_1 imes P_0 N}^{(1)}$  represents the flat mode-1 unfolding of  $ilde{\mathcal{X}}^{(1)}$

## Second Hop



Received signal at Relay-2

$$\tilde{\mathbf{X}}_{M_2 \times P_1 P_0 N}^{(2)} = \mathbf{H}_2 \left( \mathbf{G}_1 \diamond \tilde{\mathbf{X}}_{P_0 N \times M_1}^{(1)} \right)^T + \mathbf{H}_2 \left( \mathbf{G}_1 \diamond \mathbf{N}_{P_0 N \times M_1}^{(1)} \right)^T + \mathbf{N}_{M_2 \times P_1 P_0 N}^{(2)} \mathbf{1}$$

- The signals received at relay-2 define a fourth-order tensor  $\tilde{\mathcal{X}}^{(2)} \in \mathbb{C}^{M_2 \times P_1 \times P_0 \times N}$
- $ilde{\mathbf{X}}_{M_2 imes P_1 P_0 N}^{(2)}$  represents the flat mode-1 unfolding of  $ilde{\mathcal{X}}^{(2)}$

<sup>&</sup>lt;sub>5/17</sub> <sup>1</sup>From now on, a noiseless formulation

### **Third Hop**



#### **Received signal at Destination**

$$\mathbf{X}_{M_{3}\times P_{2}P_{1}P_{0}N}^{(3)}=\mathbf{H}_{3}\left(\mathbf{G}_{2}\diamond\mathbf{X}_{P_{1}P_{0}N\times M_{2}}^{(2)}\right)^{T}$$

- The signals received at the destination define a fifth-order tensor  $\mathcal{X}^{(3)} \in \mathbb{C}^{M_3 \times P_2 \times P_1 \times P_0 \times N}$
- $\mathbf{X}_{M_3 \times P_2 P_1 P_0 N}^{(3)}$  is the flat mode-1 unfolding of tensor  $\mathcal{X}^{(3)}$  following a PARAFAC decomposition

### **Third Hop**



#### **Received Signal at Destination**

• Replacing  $\mathbf{X}_{P_1P_0N \times M_2}^{(2)}$  and then  $\mathbf{X}_{P_0N \times M_1}^{(1)}$ , tensor  $\mathcal{X}^{(3)}$  also satisfies a generalized nested PARAFAC decomposition

$$\mathbf{X}_{M_{3}\times P_{2}P_{1}P_{0}N}^{(3)} = \mathbf{H}_{3} \left[ \mathbf{G}_{2} \diamond \qquad \left( \mathbf{G}_{1} \diamond \left( \mathbf{G}_{0} \diamond \mathbf{S} \right) \mathbf{H}_{1}^{T} \right) \mathbf{H}_{2}^{T} \right]^{T}$$

#### **Received Signal at Destination**



• Another unfolding of the PARAFAC model  $\mathcal{X}^{(3)} \in \mathbb{C}^{M_3 imes P_2 imes P_1 imes P_0 imes N}$  is

$$\mathbf{X}_{M_3P_2 \times P_1P_0N}^{(3)} = (\mathbf{H}_3 \diamond \mathbf{G}_2) \, \mathbf{X}_{M_2 \times P_1P_0N}^{(2)}$$

#### **Received Signal at Destination**



• Another unfolding of the PARAFAC model  $\mathcal{X}^{(3)} \in \mathbb{C}^{M_3 imes P_2 imes P_1 imes P_0 imes N}$  is

$$\mathbf{X}_{M_3P_2 \times P_1P_0N}^{(3)} = (\mathbf{H}_3 \diamond \mathbf{G}_2) \, \mathbf{X}_{M_2 \times P_1P_0N}^{(2)}$$

• Replacing  $\mathbf{X}_{M_2 \times P_1 P_0 N}^{(2)} = \mathbf{H}_2 \left( \mathbf{G}_1 \diamond \mathbf{X}_{P_0 N \times M_1}^{(1)} \right)^T$  leads to

$$\mathbf{X}_{M_{3}P_{2}\times P_{1}P_{0}N}^{(3)} = \left(\mathbf{H}_{3} \diamond \mathbf{G}_{2}\right) \mathbf{H}_{2} \left(\mathbf{G}_{1} \diamond \mathbf{X}_{P_{0}N \times M_{1}}^{(1)}\right)^{T}$$

#### **Received Signal at Destination**



• Another unfolding of the PARAFAC model  $\mathcal{X}^{(3)} \in \mathbb{C}^{M_3 imes P_2 imes P_1 imes P_0 imes N}$  is

$$\mathbf{X}_{M_3P_2 \times P_1P_0N}^{(3)} = (\mathbf{H}_3 \diamond \mathbf{G}_2) \, \mathbf{X}_{M_2 \times P_1P_0N}^{(2)}$$

• Replacing  $\mathbf{X}_{M_2 \times P_1 P_0 N}^{(2)} = \mathbf{H}_2 \left( \mathbf{G}_1 \diamond \mathbf{X}_{P_0 N \times M_1}^{(1)} \right)^T$  leads to

$$\mathbf{X}_{M_{3}P_{2}\times P_{1}P_{0}N}^{(3)} = \underbrace{(\mathbf{H}_{3}\diamond\mathbf{G}_{2})\mathbf{H}_{2}}_{\mathbf{H}_{M_{3}P_{2}\times M_{1}}^{(1\mapsto3)}} \begin{pmatrix} \mathbf{G}_{1}\diamond\mathbf{X}_{P_{0}N\times M_{1}}^{(1)} \end{pmatrix}^{T}$$

•  $\mathbf{H}_{M_3P_2 \times M_1}^{(1 \mapsto 3)}$  is a unfolding of the third-order effective channel tensor  $\mathcal{H}^{(1 \mapsto 3)} \in \mathbb{C}^{M_3 \times P_2 \times M_1}$  linking the relay-1 and the destination (node-3)

$$\mathbf{H}_{M_{3}P_{2}\times M_{1}}^{(1\mapsto3)}=\left(\mathbf{H}_{3}\diamond\mathbf{G}_{2}\right)\mathbf{H}_{2}$$

•  $\mathbf{H}_{M_3P_2 \times M_1}^{(1 \mapsto 3)}$  is a unfolding of the third-order effective channel tensor  $\mathcal{H}^{(1 \mapsto 3)} \in \mathbb{C}^{M_3 \times P_2 \times M_1}$  linking the relay-1 and the destination (node-3)

$$\mathbf{H}_{M_{3}P_{2}\times M_{1}}^{(1\mapsto3)}=\left(\mathbf{H}_{3}\diamond\mathbf{G}_{2}\right)\mathbf{H}_{2}$$

•  $\mathbf{H}_{M_3P_2 \times M_1}^{(1 \mapsto 3)}$  is a unfolding of the third-order effective channel tensor  $\mathcal{H}^{(1 \mapsto 3)} \in \mathbb{C}^{M_3 \times P_2 \times M_1}$  linking the relay-1 and the destination (node-3)

$$\mathbf{H}_{M_{3}P_{2}\times M_{1}}^{(1\mapsto3)}=\left(\mathbf{H}_{3}\diamond\mathbf{G}_{2}\right)\mathbf{H}_{2}$$



- Replacing now  $\mathbf{X}_{P_0N\times M_1}^{(1)}$  in  $\mathbf{X}_{M_3P_2P_1\times P_0N}^{(3)},$  we get

• Replacing now  $\mathbf{X}_{P_0N\times M_1}^{(1)}$  in  $\mathbf{X}_{M_3P_2P_1\times P_0N}^{(3)}$  , we get

$$\mathbf{X}_{M_{3}P_{2}P_{1}\times P_{0}N}^{(3)} = \underbrace{\left(\mathbf{H}_{M_{3}P_{2}\times M_{1}}^{(1\mapsto3)}\diamond\mathbf{G}_{1}\right)\mathbf{H}_{1}}_{\mathbf{H}_{M_{3}P_{2}P_{1}\times M_{0}}} (\mathbf{G}_{0}\diamond\mathbf{S})^{T}$$

• Replacing now  $\mathbf{X}_{P_0N\times M_1}^{(1)}$  in  $\mathbf{X}_{M_3P_2P_1\times P_0N}^{(3)}$  , we get

$$\mathbf{X}_{M_{3}P_{2}P_{1}\times P_{0}N}^{(3)} = \underbrace{\left(\mathbf{H}_{M_{3}P_{2}\times M_{1}}^{(1\mapsto3)}\diamond\mathbf{G}_{1}\right)\mathbf{H}_{1}}_{\mathbf{H}_{M_{3}P_{2}P_{1}\times M_{0}}^{(0\mapsto3)}} \left(\mathbf{G}_{0}\diamond\mathbf{S}\right)^{T}$$

•  $\mathbf{H}_{M_3P_2P_1 \times M_0}^{(0 \mapsto 3)}$  is a unfolding of the fourth-order effective channel tensor  $\mathcal{H}^{(0 \mapsto 3)} \in \mathbb{C}^{M_3 \times P_2 \times P_1 \times M_0}$  linking the source and the destination (node-3)

• Replacing now  $\mathbf{X}_{P_0N\times M_1}^{(1)}$  in  $\mathbf{X}_{M_3P_2P_1\times P_0N}^{(3)}$  , we get

$$\mathbf{X}_{M_{3}P_{2}P_{1}\times P_{0}N}^{(3)} = \underbrace{\left(\mathbf{H}_{M_{3}P_{2}\times M_{1}}^{(1\mapsto3)}\diamond\mathbf{G}_{1}\right)\mathbf{H}_{1}}_{\mathbf{H}_{M_{3}P_{2}P_{1}\times M_{0}}^{(0\mapsto3)}} \left(\mathbf{G}_{0}\diamond\mathbf{S}\right)^{T}$$

•  $\mathbf{H}_{M_3P_2P_1 \times M_0}^{(0 \mapsto 3)}$  is a unfolding of the fourth-order effective channel tensor  $\mathcal{H}^{(0 \mapsto 3)} \in \mathbb{C}^{M_3 \times P_2 \times P_1 \times M_0}$  linking the source and the destination (node-3)



• The fifth-order nested PARAFAC model is decomposed into three third-order PARAFAC models from  $\mathcal{X}^{(3)},\,\mathcal{H}^{(0\mapsto3)}$ , and  $\mathcal{H}^{(1\mapsto3)}$  as

$$\mathbf{X}_{NM_{3}P_{2}P_{1}\times P_{0}}^{(3)} = \left(\mathbf{S} \diamond \mathbf{H}_{M_{3}P_{2}P_{1}\times M_{0}}^{(0\mapsto3)}\right) \mathbf{G}_{0}^{T} = \mathbf{R}\mathbf{G}_{0}^{T}$$

$$\mathbf{H}_{M_{3}P_{2}M_{0}\times P_{1}}^{(0\mapsto3)} = \left(\mathbf{H}_{M_{3}P_{2}\times M_{1}}^{(1\mapsto3)} \diamond \mathbf{H}_{1}^{T}\right) \mathbf{G}_{1}^{T} = \mathbf{Q}\mathbf{G}_{1}^{T}$$

$$\mathbf{H}_{M_{3}M_{1}\times P_{2}}^{(1\mapsto3)} = \left(\mathbf{H}_{3} \diamond \mathbf{H}_{2}^{T}\right) \mathbf{G}_{2}^{T} = \mathbf{Z}\mathbf{G}_{2}^{T}$$

$$(1)$$

• The fifth-order nested PARAFAC model is decomposed into three third-order PARAFAC models from  $\mathcal{X}^{(3)},\,\mathcal{H}^{(0\mapsto3)}$ , and  $\mathcal{H}^{(1\mapsto3)}$  as

$$\mathbf{X}_{NM_{3}P_{2}P_{1}\times P_{0}}^{(3)} = \left(\mathbf{S} \diamond \mathbf{H}_{M_{3}P_{2}P_{1}\times M_{0}}^{(0\mapsto3)}\right) \mathbf{G}_{0}^{T} = \mathbf{R}\mathbf{G}_{0}^{T} \qquad (1)$$

$$\mathbf{H}_{M_{3}P_{2}M_{0}\times P_{1}}^{(0\mapsto3)} = \left(\mathbf{H}_{M_{3}P_{2}\times M_{1}}^{(1\mapsto3)} \diamond \mathbf{H}_{1}^{T}\right) \mathbf{G}_{1}^{T} = \mathbf{Q}\mathbf{G}_{1}^{T}$$

$$\mathbf{H}_{M_{3}M_{1}\times P_{2}}^{(1\mapsto3)} = \left(\mathbf{H}_{3} \diamond \mathbf{H}_{2}^{T}\right) \mathbf{G}_{2}^{T} = \mathbf{Z}\mathbf{G}_{2}^{T}$$

As G<sup>T</sup><sub>k</sub>G<sup>\*</sup><sub>k</sub> = I<sub>M<sub>k</sub></sub> for k = 0, · · · , K allows us to derive a three-step closed-form semiblind receiver to estimate the symbol matrix S and the channel matrices H<sub>k</sub>, k = 1, 2, 3

• Using the column orthonormality of  $\mathbf{G}_k$ , k = 0, 1, 2, the least squares (LS) estimates of  $(\mathbf{R}, \mathbf{Q}, \mathbf{Z})$  can be successively calculated as

$$\hat{\mathbf{R}} = \mathbf{X}_{NM_3P_2P_1 \times P_0}^{(3)} \mathbf{G}_0^* \cong \left( \mathbf{S} \diamond \mathbf{H}_{M_3P_2P_1 \times M_0}^{(0 \mapsto 3)} \right),$$
(2)

$$\hat{\mathbf{Q}} = \hat{\mathbf{H}}_{M_3P_2M_0 \times P_1}^{(0 \mapsto 3)} \mathbf{G}_1^* \cong \left( \mathbf{H}_{M_3P_2 \times M_1}^{(1 \mapsto 3)} \diamond \mathbf{H}_1^T \right), \qquad (3)$$

$$\hat{\mathbf{Z}} = \hat{\mathbf{H}}_{M_3M_1 \times P_2}^{(1 \mapsto 3)} \mathbf{G}_2^* \cong \left(\mathbf{H}_3 \diamond \mathbf{H}_2^T\right), \tag{4}$$

• Using the column orthonormality of  $\mathbf{G}_k$ , k = 0, 1, 2, the least squares (LS) estimates of  $(\mathbf{R}, \mathbf{Q}, \mathbf{Z})$  can be successively calculated as

$$\hat{\mathbf{R}} = \mathbf{X}_{NM_3P_2P_1 \times P_0}^{(3)} \mathbf{G}_0^* \cong \left( \mathbf{S} \diamond \mathbf{H}_{M_3P_2P_1 \times M_0}^{(0 \mapsto 3)} \right),$$
(2)

$$\hat{\mathbf{Q}} = \hat{\mathbf{H}}_{M_3 P_2 M_0 \times P_1}^{(0 \mapsto 3)} \mathbf{G}_1^* \cong \left( \mathbf{H}_{M_3 P_2 \times M_1}^{(1 \mapsto 3)} \diamond \mathbf{H}_1^T \right), \tag{3}$$

$$\hat{\mathbf{Z}} = \hat{\mathbf{H}}_{M_3M_1 \times P_2}^{(1 \mapsto 3)} \mathbf{G}_2^* \cong \left(\mathbf{H}_3 \diamond \mathbf{H}_2^T\right), \tag{4}$$

• From the LS estimate  $\hat{\mathbf{R}}$ , the factors S and  $\mathbf{H}_{M_3P_2P_1 \times M_0}^{(0 \mapsto 3)}$  are found by the Khatri-Rao factorization (KRF) algorithm

• Using the column orthonormality of  $\mathbf{G}_k$ , k = 0, 1, 2, the least squares (LS) estimates of  $(\mathbf{R}, \mathbf{Q}, \mathbf{Z})$  can be successively calculated as

$$\hat{\mathbf{R}} = \mathbf{X}_{NM_3P_2P_1 \times P_0}^{(3)} \mathbf{G}_0^* \cong \left( \mathbf{S} \diamond \mathbf{H}_{M_3P_2P_1 \times M_0}^{(0 \mapsto 3)} \right),$$
(2)

$$\hat{\mathbf{Q}} = \hat{\mathbf{H}}_{M_3 P_2 M_0 \times P_1}^{(0 \mapsto 3)} \mathbf{G}_1^* \cong \left( \mathbf{H}_{M_3 P_2 \times M_1}^{(1 \mapsto 3)} \diamond \mathbf{H}_1^T \right), \tag{3}$$

$$\hat{\mathbf{Z}} = \hat{\mathbf{H}}_{M_3M_1 \times P_2}^{(1 \mapsto 3)} \mathbf{G}_2^* \cong \left(\mathbf{H}_3 \diamond \mathbf{H}_2^T\right), \tag{4}$$

- From the LS estimate  $\hat{\mathbf{R}}$ , the factors  $\mathbf{S}$  and  $\mathbf{H}_{M_3P_2P_1 \times M_0}^{(0 \mapsto 3)}$  are found by the Khatri-Rao factorization (KRF) algorithm
- Then, the estimate  $\hat{\mathbf{H}}_{M_3P_2P_1 \times M_0}^{(0 \mapsto 3)}$  is reshaped as  $\hat{\mathbf{H}}_{M_3P_2M_0 \times P_1}^{(0 \mapsto 3)}$  to compute  $\hat{\mathbf{Q}}$ , from which the factors  $\mathbf{H}_1$  and  $\mathbf{H}_{M_3P_2 \times M_1}^{(1 \mapsto 3)}$  are extracted by applying the KRF algorithm

• Using the column orthonormality of  $\mathbf{G}_k$ , k = 0, 1, 2, the least squares (LS) estimates of  $(\mathbf{R}, \mathbf{Q}, \mathbf{Z})$  can be successively calculated as

$$\hat{\mathbf{R}} = \mathbf{X}_{NM_3P_2P_1 \times P_0}^{(3)} \mathbf{G}_0^* \cong \left( \mathbf{S} \diamond \mathbf{H}_{M_3P_2P_1 \times M_0}^{(0 \mapsto 3)} \right),$$
(2)

$$\hat{\mathbf{Q}} = \hat{\mathbf{H}}_{M_3 P_2 M_0 \times P_1}^{(0 \mapsto 3)} \mathbf{G}_1^* \cong \left( \mathbf{H}_{M_3 P_2 \times M_1}^{(1 \mapsto 3)} \diamond \mathbf{H}_1^T \right), \tag{3}$$

$$\hat{\mathbf{Z}} = \hat{\mathbf{H}}_{M_3M_1 \times P_2}^{(1 \mapsto 3)} \mathbf{G}_2^* \cong \left(\mathbf{H}_3 \diamond \mathbf{H}_2^T\right), \tag{4}$$

- From the LS estimate  $\hat{\mathbf{R}}$ , the factors  $\mathbf{S}$  and  $\mathbf{H}_{M_3P_2P_1 \times M_0}^{(0 \mapsto 3)}$  are found by the Khatri-Rao factorization (KRF) algorithm
- Then, the estimate  $\hat{\mathbf{H}}_{M_3P_2P_1 \times M_0}^{(0 \mapsto 3)}$  is reshaped as  $\hat{\mathbf{H}}_{M_3P_2M_0 \times P_1}^{(0 \mapsto 3)}$  to compute  $\hat{\mathbf{Q}}$ , from which the factors  $\mathbf{H}_1$  and  $\mathbf{H}_{M_3P_2 \times M_1}^{(1 \mapsto 3)}$  are extracted by applying the KRF algorithm
- Finally,  $\hat{\mathbf{H}}_{M_3P_2 \times M_1}^{(1 \mapsto 3)}$  is reshaped as  $\hat{\mathbf{H}}_{M_3M_1 \times P_2}^{(1 \mapsto 3)}$  to compute  $\hat{\mathbf{Z}}$ , from which the channels  $(\mathbf{H}_2, \mathbf{H}_3)$  are extracted using again the KRF algorithm

#### General Case K relays

• The signals received at the destination defines a (K+3)th-order tensor  $\tilde{\mathcal{X}}^{(K+1)} \in \mathbb{C}^{M_{K+1} \times P_K \times P_{K-1} \times \cdots \times P_0 \times N}$ , with flat mode-1 unfolding as

 $\mathbf{X}_{M_{K+1} \times P_K P_{K-1} \cdots P_0 N}^{(K+1)} = \mathbf{H}_{K+1} \left( \mathbf{G}_K \diamond \mathbf{X}_{P_{K-1} \cdots P_0 N \times M_K}^{(K)} \right)^T$ 

#### General Case K relays

• The signals received at the destination defines a (K+3)th-order tensor  $\tilde{\mathcal{X}}^{(K+1)} \in \mathbb{C}^{M_{K+1} \times P_K \times P_{K-1} \times \cdots \times P_0 \times N}$ , with flat mode-1 unfolding as

$$\mathbf{X}_{M_{K+1} \times P_K P_{K-1} \cdots P_0 N}^{(K+1)} = \mathbf{H}_{K+1} \left( \mathbf{G}_K \diamond \mathbf{X}_{P_{K-1} \cdots P_0 N \times M_K}^{(K)} \right)^T$$

• The equivalent third-order PARAFAC model  $\|\mathbf{H}_{M_{K+1}P_{K}\cdots P_{1}\times M_{0}}^{(0\mapsto K+1)}, \mathbf{G}_{0}, \mathbf{S}; M_{0}\|$  for  $\mathcal{X}^{(K+1)}$  is

$$\mathbf{X}_{NM_{K+1}P_{K}\cdots P_{1}\times P_{0}}^{(K+1)} = \left(\mathbf{S} \diamond \mathbf{H}_{M_{K+1}P_{K}\cdots P_{1}\times M_{0}}^{(0\mapsto K+1)}\right) \mathbf{G}_{0}^{T}$$

• The signals received at the destination defines a (K+3)th-order tensor  $\tilde{\mathcal{X}}^{(K+1)} \in \mathbb{C}^{M_{K+1} \times P_K \times P_{K-1} \times \cdots \times P_0 \times N}$ , with flat mode-1 unfolding as

$$\mathbf{X}_{M_{K+1} \times P_K P_{K-1} \cdots P_0 N}^{(K+1)} = \mathbf{H}_{K+1} \left( \mathbf{G}_K \diamond \mathbf{X}_{P_{K-1} \cdots P_0 N \times M_K}^{(K)} \right)^T$$

• The equivalent third-order PARAFAC model  $\|\mathbf{H}_{M_{K+1}P_{K}\cdots P_{1}\times M_{0}}^{(0\mapsto K+1)}, \mathbf{G}_{0}, \mathbf{S}; M_{0}\|$  for  $\mathcal{X}^{(K+1)}$  is

$$\mathbf{X}_{NM_{K+1}P_{K}\cdots P_{1}\times P_{0}}^{(K+1)} = \left(\mathbf{S} \diamond \mathbf{H}_{M_{K+1}P_{K}\cdots P_{1}\times M_{0}}^{(0 \mapsto K+1)}\right) \mathbf{G}_{0}^{T}$$

• From  $\mathbf{H}_{M_{K+1}P_K\cdots P_1 \times M_0}^{(0 \mapsto K+1)}$  we can define other K third-order PARAFAC models to estimate the individual channel hops as

 $\mathbf{H}_{M_{K+1}P_{K}\cdots P_{k+2}M_{k}\times P_{k+1}}^{(k\mapsto K+1)} = (\mathbf{H}_{M_{K+1}P_{K}\cdots P_{k+2}\times M_{k+1}}^{(k\mapsto K+1)} \diamond \mathbf{H}_{k+1}^{T})\mathbf{G}_{k+1}^{T}$ 

### **Simulation Assumptions**

• The relays are assumed to be uniformly distributed between the source and the destination

### **Simulation Assumptions**

- The relays are assumed to be uniformly distributed between the source and the destination
- The performance criteria are the SER and the NMSE of the estimated channels averaged over  $4\times 10^4$  Monte Carlo runs.

- The relays are assumed to be uniformly distributed between the source and the destination
- The performance criteria are the SER and the NMSE of the estimated channels averaged over  $4\times 10^4$  Monte Carlo runs.
- Each run corresponds to a realization of all channel and symbol matrices, and noise tensors

- The relays are assumed to be uniformly distributed between the source and the destination
- The performance criteria are the SER and the NMSE of the estimated channels averaged over  $4\times 10^4$  Monte Carlo runs.
- Each run corresponds to a realization of all channel and symbol matrices, and noise tensors
- The transmitted symbols are randomly drawn from a unit energy QAM symbol alphabet

- The relays are assumed to be uniformly distributed between the source and the destination
- The performance criteria are the SER and the NMSE of the estimated channels averaged over  $4\times 10^4$  Monte Carlo runs.
- Each run corresponds to a realization of all channel and symbol matrices, and noise tensors
- The transmitted symbols are randomly drawn from a unit energy QAM symbol alphabet
- We assume  $\mathbf{H}_{k+1}$ ,  $k = 0, \cdots, K$ , i.i.d. zero-mean circularly-symmetric complex Gaussian entries with variances given by  $1/\eta^{\beta}M_k$ , where  $\eta = d/d_0 = 1/(K+1)$  and  $\beta = 3$ , d denoting the distance between two consecutive nodes, and  $d_0$  the distance between the source and the destination

### **Simulation Results**

SER: 4-QAM, K = 1:3 relays



Figure 2: SER for three different numbers of relays and two system configurations.

14/17

### **Simulation Results**

#### NMSE: 4-QAM, K = 2 relays, $P_k = M_k = N = 3$



**Figure 3:** NMSE of the individual channels with K = 2.

• Signals received at the destination define a (K+3)-th order tensor satisfying a generalized nested PARAFAC model

- Signals received at the destination define a  $(K+3)\mbox{-th}$  order tensor satisfying a generalized nested PARAFAC model
- A sequential closed-form semiblind receiver for jointly estimating the information symbols and the individual channels has been derived by decomposing this model into K + 1 third-order PARAFAC models

- Signals received at the destination define a  $(K+3)\mbox{-th}$  order tensor satisfying a generalized nested PARAFAC model
- A sequential closed-form semiblind receiver for jointly estimating the information symbols and the individual channels has been derived by decomposing this model into K+1 third-order PARAFAC models
- Diversity gains are obtained as the number of relays increases from K = 1 to K = 3 due to the KRST coding at each relay. Increasing the values of N,  $P_k$  and  $M_k$  from 2 to 4 also leads to better SER performance

- Signals received at the destination define a  $(K+3)\mbox{-th}$  order tensor satisfying a generalized nested PARAFAC model
- A sequential closed-form semiblind receiver for jointly estimating the information symbols and the individual channels has been derived by decomposing this model into K+1 third-order PARAFAC models
- Diversity gains are obtained as the number of relays increases from K = 1 to K = 3 due to the KRST coding at each relay. Increasing the values of N,  $P_k$  and  $M_k$  from 2 to 4 also leads to better SER performance
- Extensions of this work include the exploitation of the noise structure to develop a tensor-based receiver using a minimum-mean-square-error (MMSE) algorithm, and the case of orthogonal frequency division multiplexing (OFDM) relay systems

### Main References

- F. Roemer and M. Haardt, "Tensor-based channel estimation and iterative refinements for two-way relaying with multiple antennas and spatial reuse," IEEE Transactions on Signal Processing, vol. 58, no. 11, pp. 5720–5735, Nov 2010.
- X. Han, A. L. F. de Almeida, and Z. Yang, "Channel estimation for MIMO multi-relay systems using a tensor approach," EURASIP Journal on Advances in Signal Processing, vol. 2014, no. 1, p. 163, 2014.
- I. V. Cavalcante, A. L. F. de Almeida, and M. Haardt, "Joint channel estimation for three-hop MIMO relaying systems," IEEE Signal Processing Letters, vol. 22, no. 12, pp. 2430–2434, Dec 2015.
- L. R. Ximenes, G. Favier, A. L. F. de Almeida, and Y. C. B. Silva, "PARAFAC-PARATUCK semi-blind receivers for two-hop cooperative MIMO relay systems," IEEE Transactions on Signal Processing, vol. 62, no. 14, pp. 3604–3615, July 2014.
- L. R. Ximenes, G. Favier, and A. L. F. de Almeida, "Semi-blind receivers for non-regenerative cooperative MIMO communications based on nested PARAFAC modeling," *IEEE Transactions on Signal Processing*, vol. 63, no. 18, pp. 4985-4998, Sept 2015.
  - ——, "Closed-form semi-blind receiver for MIMO relay systems using double Khatri-Rao space-time coding," IEEE Signal Processing Letters, vol. 23, no. 3, pp. 316–320, March 2016.
- N. D. Sidiropoulos and R. S. Budampati, "Khatri-Rao space-time codes," IEEE Transactions on Signal Processing, vol. 50, no. 10, pp. 2396–2407, Oct 2002.
  - A. L. F. de Almeida and G. Favier, "Double Khatri-Rao space-time-frequency coding using semi-blind PARAFAC based receiver," IEEE Signal Processing Letters, vol. 20, no. 5, pp. 471–474, May 2013.
- A. Y. Kibangou and G. Favier, "Non-iterative solution for PARAFAC with a Toeplitz matrix factor," in The 17th European Signal Processing Conference, 2009, pp. 691–695.

# Thank you for your attention.