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INTRODUCTION

A large body of existing work on projection design for compressed sensing aims to
minimize a lower bound on metrics like mutual coherence or RIC. Owing to the
optimization complexity involved, a relaxation of the metric considered is the average
coherence i,y [1, 2]. This relaxation is a heuristic, and no theoretical bounds exist for CS
with p,ye. Further, optimizing on a worst-case bound is not guaranteed to improve the

performance on an ensemble.

Designing constrained projections using communications-inspired methods considers
energy constraints on rows of the sensing matrix [3, 4]. On the contrary, compressive
imagers employing DMD arrays for acquisition impose optical constraints [5] on each
element of the sensing matrix. These constraints inhibit the applicability of
communications-based methods to image acquisition.

CONTRIBUTIONS

In this work, we present

1. Evaluation of an average coherence-based design, with optical constraints, and
demonstrate anomalous behavior in mutual coherences and RICs of designed
matrices;

2. A novel approach to projection design optimizing on oracular MMSE and validation
results on a realistic architecture, using transparent codes with quantization;

3. Comparative results showing the superiority of MMSE-based design over coherence-
based design.
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COHERENCE-BASED DESIGN
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Optical Constraints Average Coherence

transparency (€ [0,1]) & relaxation of the max-norm
quantization (8 — bit)
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Table 1: PSNR values from reconstruction of images Table 2: Simulation results of matrix descriptors for seed (top) and
from BSDS500 at 37.5% and 50% measurements. optimized (bottom) sensing matrices. Anomalous behavior in red.

Contrary to the expected behavior, the minimization may increase uy.x or RIC &
(Table 2, >55% matrices demonstrate anomalies). However, since descending on p,y,
even in the above anomalous cases offers better reconstruction (Table 1), we
demonstrate examples where a decrease in up,x Or 6; does not guarantee better
reconstruction errors, and hence these cannot be reliable metrics for our setup.

MMSE-BASED DESIGN

» Statistical Compressed Sensing framework for model-based sparsity is used. A learned
GM is a good prior on natural image patches [6, 7].

» Decoder: Piecewise-Linear Estimator (PLE) is used: efficient and approximates MAP
» Optimization objective: MMSE is not tractable!
* Use oracular MMSE Mg instead — tightly approximates MMSE at high SNR [8, 9]
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b = arg min ﬂM ) (MMSE for Gaussian component j)

Optical Constraints Do € P ]t
transparency (€ [0,1]) & L j=1

quantization (8 — bit)

» 25 component GM prior learned on patches from BSDS500;
evaluation on unseen patches from BSDS and INRIA Holidays

» Image acquisition using non-overlapping 16 X 16 patches
» ¥, sparsity-based baselines: overcomplete 2D-DCT and 2D-

Haar dictionaries, SPGL1 solver

» For results across measurement ratios (12.5% — 50%), noise
levels (1% — 5%) and datasets, refer full-text

Figure 1: Sample images from BSDS500 and INRIA Holidays datasets
reconstructed using 12.5% compressive measurements at 1% noise — (a)
random projections, (b) coherence-optimized projections using dictionary-
based sparsity; (c) random projections, and (d) oracular MMSE-optimized

projections utilizing model-based sparsity.
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EVALUATION

Image # || ® P d"LE | Proposed
1 18.1798 | 18.9733 | 20.1748 | 21.1772
2 25.1973 | 25.335 | 26.5923 | 27.2622
3 18.3463 | 18.6617 | 19.8185 | 20.9138
4 19.8323 | 21.0297 | 21.8075 | 23.0925
5 17.6444 | 17.6018 | 18.7195 | 19.6204
§ 19.9804 | 19.8052 | 20.8265 | 21.5922
7 26.1505 | 26.6871 | 27.7679 | 29.0994
8 21.8317 | 22.0654 | 23.4717 | 24.5041

Image # || ® | L &"LE | Proposed
1 19.0832 | 19.9328 | 20.6108 | 21.2366
2 25.4462 | 26.0214 | 26.8775 | 27.3121
3 18.7209 | 19.6227 | 20.2133 | 21.0092
4 20.768 | 21.9571 | 22.296 | 23.1672
D 17.9932 | 18.3577 | 19.0837 | 19.7392
6 20.0471 | 20.2565 | 21.0641 | 21.6476
7 26.2 27.382 | 28.1836 | 29.223
8 22.5409 | 23.2168 | 23.9792 | 24.6183
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DESIGNING CONSTRAINED PROJECTIONS FOR COMPRESSED SENSING:

(d) Proposed Method (e) Original
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