

LUXEMBOURG

DEPLOYING JOINT BEAM HOPPING AND PRECODING IN MULTIBEAM SATELLITE NETWORKS

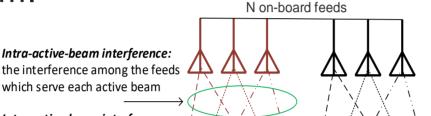
Vahid Joroughi, Eva Lagunas, Stefano Andrenacci, Nicola Maturo, Symeon

Chatzinotas, Joel Grotz and Björn Ottersten

securityandtrust.lu

Interdisciplinary Centre for Security, Reliability and Trust (SnT) University of Luxembourg, Luxembourg

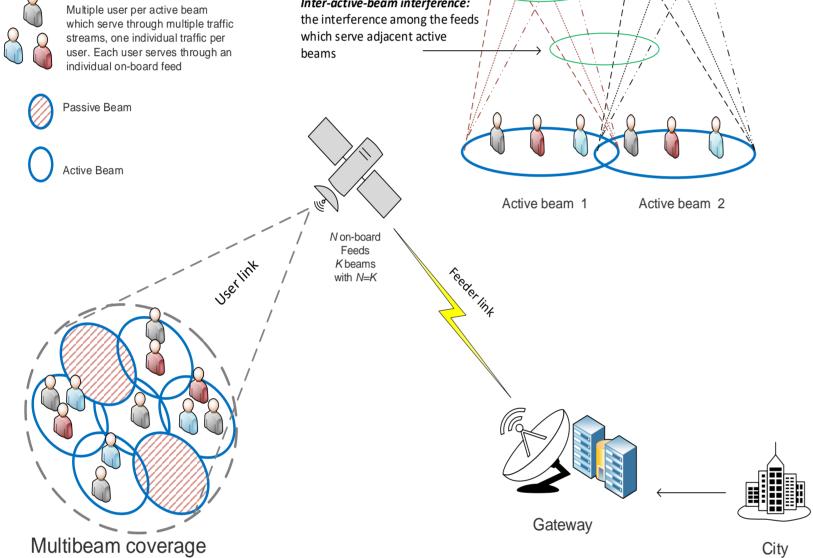
Abstract


- Beam Hopping to increase satellite flexibility and better fit the irregular traffic demand.
- Precoding optimizes per beam power allocation considering traffic demands weights to manage interference.

System Decription and BH scheme

Assumptions

- N: number of satellite feeds
- K_a : number of active beams at the time instant t_i
- K_p : number of non active beams t_i


At each time instant t_i single or multiple users terminal can be served in each active beam.

Problem Formulation
$\max_{\substack{SINR(t) \geq 0, W(t)}} f(SINR(t))$
s.t. $H(t)W(t) = diag\sqrt{SINR(t)}$
$[W(t)W^{H}(t)]_{k,k} \leq \frac{\dot{P}}{N} + \Delta p_{k}(t) \qquad k = 1,, N$

Heuristic solution to calculate $\Delta p_k(t)$. $Calculate \Delta p_k(t)$ $\Delta p_k(t) = \frac{\left[2^{\left(\frac{R_{umet,k}T}{\tau_k B}\right)}(\text{SINR}_k(t)+1)\right] - 1}{\text{SINR}_k(t)},$ with $\tau_k \triangleq \frac{\frac{R_{reg,k}}{\nu_k}}{\sum_{n=0}^{N_{\text{TWTA}}-1}\left(\frac{R_{reg,n}}{\nu_n}\right)}T$, such that $R_{umet,k}$ is the Unmet capacity through k-th feed. B is the band served by each TWTA amplifier and T is the total number of time slots that active beams serve.

Applying a fairness criterion we can deal with the complexity of the problem so having:

Figure 1. Multibeam Satellite System with active and passive beam

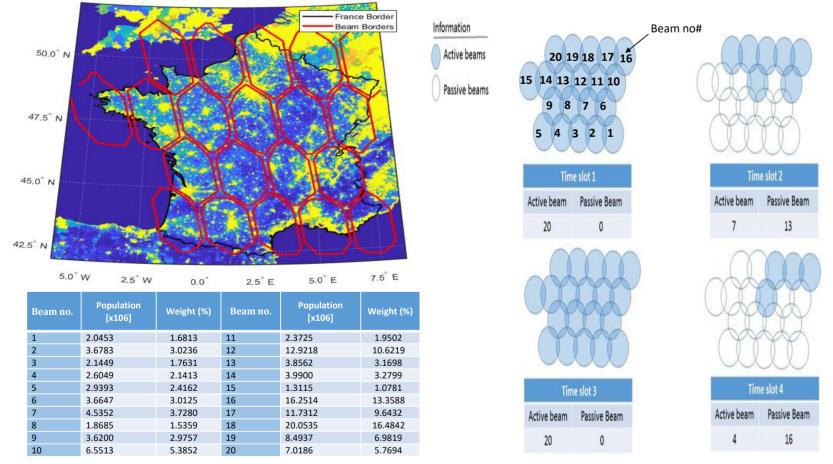


Figure 2. Population Data over France and Active Beams time slots

Solution for W(t)

$$\mathsf{W}(t) = \sqrt{s_f(t)} (\mathsf{H}^{\dagger}(t) + \mathsf{R}^{\perp}(t) \mathsf{Q}(t))$$

Simulation Results

bea /s]

Link	Title	Description
	Satellite height	35786 km (GEO)
	Earth radius	6378.137 Km
Forward link parameters	Numer Of Satellites	1
	Feed radiation pattern	ESA [13]
	Number of feeds N	22
	Number of beams K	20
pa	Total bandwidth	500 MHz
ram	Roll-off factor	0.25
eter	Coverage area	France
×.	clear sky gain	17.68 G/T
	Satellite antenna gain	57 dBi
	Frequency	$20 \times 10^9 \text{Hz}$
User link	user antenna gain	41.7 dBi

Nº of Configuration	Number of total active and passive beams						ams		Average offered capacity	Average unused system	Average unmet capacity
	Time slot 1		Time slot 2		Time slot 3		Time slot 4		considering DVB-S2x	capacity [Gb/s]	demand [Gb/s]
	Act.	Pas.	Act.	Pas.	Act.	Pas.	Act.	Pas.			
4 frequency reuse	20	0	20	0	20	0	20	0	14.46	3.29	8.09
J-PBH	20	0	7	13	20	0	4	16	23.86	2.71	2.66
2											
3 —						4 frequer	ncy reus	se	Demand capacity per bea	m ∎J-BPH	
2.5 —											

ZF Precoding Design

Let us assume perfect CSI.

Notation

- $-\mathbf{y}(t) = \mathbf{H}(t)\mathbf{x}(t) + \mathbf{n}(t)$: Received Signal
- $\mathbf{H}(t) = \mathbf{D}(t)\mathbf{G}(t)$: Channel Matrix
- $-\mathbf{x}(t) = \mathbf{W}(t)\mathbf{u}(t)$: transmitted Signal
- $-\mathbf{H}^{-} \triangleq \mathbf{H}^{\dagger}(t) + \mathbf{R}^{\perp}(t)\mathbf{Q}(t)$: Generalized Inverse

The ZF design of W(t) for the *i*-th user is equivalent to $H(t)W(t) = diag(\sqrt{SINR(t)})$ i = 1, ..., M, where $\sqrt{SINR(t)}$ is the vector of the SINR of the users.

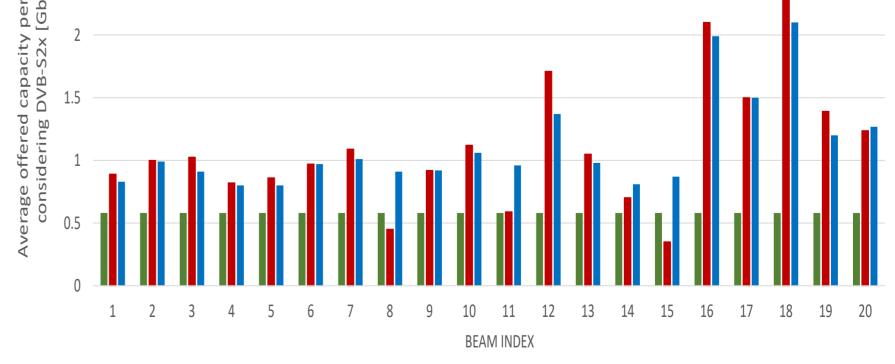


Figure 3. Average throughput (Gb/s) based on DVB-S2X.

Conclusion

The proposed joint precoding and beam hopping scheme provide better performances and it is able to adapt the resources to the demand with respect to the reference scenario.