

ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION

Ana P. Costa Jakob S. Møller Helle K. Iversen

Sadasivan Puthusserypady

DTU Electrical Engineering Department of Electrical Engineering

- Introduction: Motivation & BCI systems
- Materials and Methods Signal Processing
- Dataset Description & Experimental Design
- Results and Discussion
- Conclusion

Motivation

- Stroke as one of the **global leading causes of disability**
 - One third of survivors with chronic impairments
 - High personal and social cost
- Motor-Imagery BCI as an emergent therapy method
 - Increased neuroplasticity
 - Limitations?

BCI system

1. Pre-processing

Band-pass filtering 7 – 30 Hz

4th order Butterworth zero-phase distortion filter

2. Feature extraction

Spatial filter: Common Spatial Patterns (CSP)

- Source localization

- Parametrizing matrix:

$$\mathbf{Z}_{CSP} = \mathbf{W} \mathbf{X}$$

X : 1 EEG trial [no. channels x no. samples]

- W : Projection matrix *[no. channels x no. channels]*
- Increase variance of one condition while decreasing it for the other

2. Feature extraction

Spatial filter: Common Spatial Patterns (CSP)

- Parametrizing matrix:

$$\mathbf{Z}_{CSP} = \mathbf{W} \ \mathbf{X}$$

- Solution: solve GED problem $\mathbf{C}_1 \mathbf{w}_i = \lambda_i \mathbf{C}_2 \mathbf{w}_i$

 ${f C}_1$, ${f C}_2$: Covariance matrix of classes 1 & 2 ${f w}_i$, λ_i : Generalized eigenvector & eigenvalue i

2. Feature extraction

Adaptive filter: ACSP

- Rayleigh quotient:

$$\underset{\mathbf{W}}{\operatorname{argmax}} \frac{\mathbf{W}^{T}(\mathbf{C}_{1} - \mathbf{C}_{2})\mathbf{W}}{\mathbf{W}^{T}(\mathbf{C}_{1} + \mathbf{C}_{2})\mathbf{W}}$$
$$= \underbrace{\underset{\mathbf{W}}{\operatorname{argmax}} \frac{\mathbf{W}^{T}\mathbf{C}_{1}\mathbf{W}}{\mathbf{W}^{T}(\mathbf{C}_{1} + \mathbf{C}_{2})\mathbf{W}}$$

- RLS algorithm for incremental updates of filter coefficients

- Solution:
$$\hat{\mathbf{w}}_{1}(n) = \frac{\mathbf{w}_{1}(n-1)^{T}\mathbf{C}_{\mathbf{c}}^{1}(n)\mathbf{w}_{1}(n-1)}{\mathbf{w}_{1}(n-1)^{T}\mathbf{C}_{1}^{1}(n)\mathbf{w}_{1}(n-1)}\mathbf{C}_{\mathbf{c}}^{1}(n)^{-1}\mathbf{C}_{1}^{1}(n)\mathbf{w}_{1}(n-1)$$

2. Feature extraction

Features:

- Number filter pairs (m) = 2
- Log [variance of filtered signals]
- OVR strategy: Total number of features = no. classes x 2 x m

3. Classification

Regularized Discriminant Analysis

- Control over border geometry
- Regularized covariance matrix estimation

Dataset description

2 datasets

• 4-class: BCI competition IV dataset 2a

• **3-class**: in-house dataset

Dataset description

4-class: BCI competition IV

- 2 sessions (training [long] & evaluation)
- Evaluation: trial-wise maximum average kappa value

$$k = rac{p_o - p_e}{1 - p_e}, \hspace{0.5cm} \left(egin{array}{c} p_o & - \ {
m Accuracy} \ p_e & - \ {
m Chance \ level} \end{array}
ight)$$

- Competition winner: Filter-Bank CSP (FBCSP)
- 9 subjects

Dataset description

3-class: Stroke rehabilitation setting

Settings:

- 2 sessions (training [short] & evaluation)
- 16 electrodes
- 14 subjects

Experimental design

3-class: Stroke rehabilitation setting

- Interface:

Experimental design

Trial scheme:

Beep ↓	<u>)</u> !						
	Fixation Cross Focus		Visual clue Motor Imagery			Break Relax	Start next trial
0	1 2	2 3	4	5	6	7	8
I	nterface Screen	Palmar Grasp	or Pinch	or Elboy	v n		

Results and Discussion

4-class MI of different limbs: BCI competition data

Classification performance

Subjects	CSP	ACSP	FBCSP
1	0.677	0.683	0.676
2	0.363	0.231	0.417
3	0.602	0.677	0.745
4	0.465	0.377	0.481
5	0.246	0.330	0.398
6	0.243	0.366	0.273
7	0.612	0.568	0.773
8	0.749	0.704	0.755
9	0.565	0.771	0.606
Mean	0.502	0.523	0.569
Median	0.565	0.568	0.606

Results and Discussion

4-class MI of different limbs: BCI competition data Semi-user independent strategy

Results and Discussion

3-class MI of same limb: in-house dataset

Subjects	DI	LCSP
Subjects	Fixed	Adaptive
1	0.10	0.36
2	0.08	0.49
4	0.05	0.52
5	0.19	0.46
6	0.05	0.49
7	0.10	0.65
8	0.08	0.50
9	0.05	0.71
10	0.21	0.65
11	0.05	0.48
12	0.30	0.33
13	0.13	0.33
14	0.08	0.22
Mean	0.11	0.47
Median	0.08	0.49

18-Nov-18

Results and Discussion

3-class MI of same limb: in-house dataset

Confusion matrix

Predicted labels

True labels		Grasp	Pinch	Elbow flex	
	Grasp	16 %	6.2 %	11 %	48.2 %
	Pinch	2.4 %	22.2 %	9.6 %	64.9 %
	Elbow flex.	2.6 %	3.4 %	26.6 %	81.6 %
		76.2 %	69.8 %	56.3 %	64.8 %

Conclusion

- Feasible BCI system for stroke rehabilitation
- - Personalized BCI system
- Future work:
 - Practical system: channel reduction/wireless solution
 - Unsupervised method

Questions?