

HOW MANY FMRI SCANS ARE NECESSARY AND SUFFICIENT FOR RESTING BRAIN CONNECTIVITY ANALYSIS?

Debadatta Dash¹, Anil K. Sao², Jun Wang¹, and Bharat Biswal³

¹Department of Bioengineering, The University of Texas at Dallas, TX, USA ²School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, India ³Department of Biomedical Engineering, New Jersey Institute of Technology, NJ, USA

Background

• Functional connectivity:

Temporally correlated neuronal co-activation

- Active during rest Resting state functional connectivity
- Measured by:

Low Frequency (< 0:1 Hz) Fluctuations (LFF) of Blood Oxygen Level Dependent (**BOLD**) signal

Resting state fMRI Network
Source: RFMRI.ORG

- More suitable for pediatric, aging and disordered population
- Estimation of functional connectivity: **Resting state networks** (RSNs)
- Analysis: model driven (SCCA, Graph theory, ...) or data driven (PCA, ICA, DL)

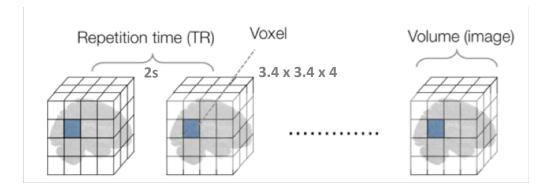
2

Motivation

- Default scanning period: 5 11 minutes
- With time SNR decreases
- Computationally expensive
- Response suppression due to repeated measure
- Reduced subject control
- Difficulty in data collection for diseased population

fMRI scan Source: radiologyinfo.org

 Need to investigate whether RSNs can be effectively estimated with a shorter scanning period.



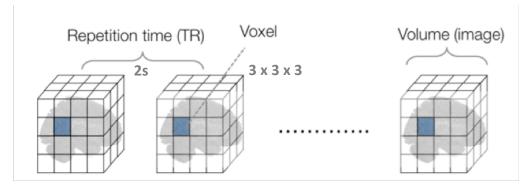
Data

> Aging data

- 14 subjects (8 females + 6 males)
- Mean age = 24 years
- IRB approved at UTD and UTSW
- Siemens Allegra **3T** scanner

Anatomical images: MPRAGE sequence: 1 mm isovoxel; sagittal TE=3.7 ms; flip angle = 12^o

- Gradient Echo Planar Images (EPI): 120 numbers
- FOV = 220 mm, 64 x 64 matrix, TR/TE = 2000/30 ms; slice thickness of 4 mm.
- <u>Flip angle = 80^o</u> (to minimize flow weighting)
- <u>32 slices in the axial plane During the resting-state</u>
- Spatial resolution of voxel as **3.4 x 3.4 x 4** mm³.



5

Data

ADHD data

- 40 adolescent subjects
- Age = **7-21** years
- <u>TR = 2000 ms</u>
- Spatial resolution of voxel as **3** x **3** x **3** mm³.
- ADHD-200 consortium

Data Preprocessing

- **SPM-12** package (http://www.fil.ion.ucl.ac.uk/spm/) on MATLAB 8.1
- Initial **2** scans discarded
- Motion corrected and co-registered to the anatomical images
- Normalized into the MNI space.
- **Global signal regression** to remove the noise.
- **Resampled** to <u>3 mm³</u>
- **Spatially smoothed** with a <u>Gaussian kernel with FWHM of 5 mm</u>.

Our Approach

Dictionary Learning

$$t \qquad x \qquad = \qquad t \qquad D \qquad x \qquad d \qquad v \qquad A$$

- Number of subjects = *m*
- Number of consecutive scans = *n* ; *t* = *nm* = total number of scans
- Number of voxels = v
- Temporally concatenation to form the data matrix: **X** s.t.

 $\mathbf{X} \in \mathbf{R}^{t \times v}$

• Decomposition of **X**:

X = D A

- where, $\mathbf{D} \in \mathbf{R}^{t \times d}$ dictionary of atoms/basis
- rows $\mathbf{a}_{[i]}$ of $\mathbf{A} \in \mathbf{R}^{d \times v}$ d number of sparse and spatially localized RSNs.

- Dictionary Learning
- Cost function:

argmin (D, A) $||\mathbf{a}_{[i]}||_1$ s.t. $\{||\mathbf{X} - \mathbf{DA}||_F\}^2 < \epsilon$

- || ||₁ Sparsity promoting function I₁-norm
- || ||_F Forbenius norm respectively.
- Jointly non-convex in (**D**, **A**) and hence becomes a NP-hard problem
- Solved using alternative iterations of Dictionary Update (DU) and Sparse Coding (SC)
- The dictionary **D** is undercomplete and projects the low rank structure of rs-fMRI data.

Experiment

- Dictionary Learning vs Group P/ICA
- Group-PCA: Eigen value analysis \rightarrow Noise suppression \rightarrow MDL criteria \rightarrow Projection
- Group-ICA: **GIFT** toolbox: Extended Infomax
- DL: Online Dictionary Learning (ODL)

Scan sampling

- 1. First n consecutive scans
- 2. Random sampling of n number of scans (n is the desired optimum scan)
- 3. All 120 scans.

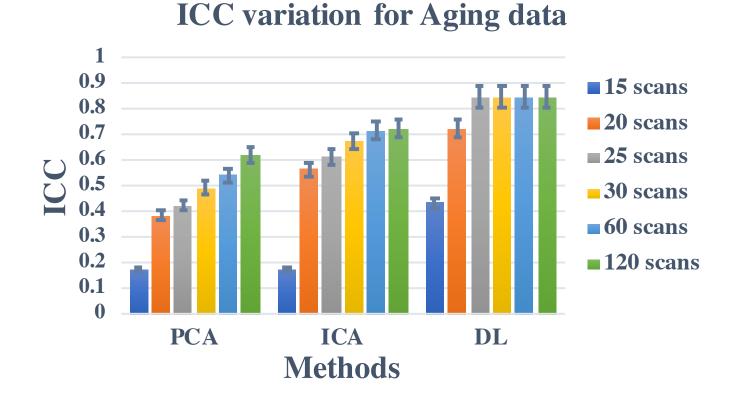
Subject sampling

• Subjects with the size of 1; 5; 10 and 14.

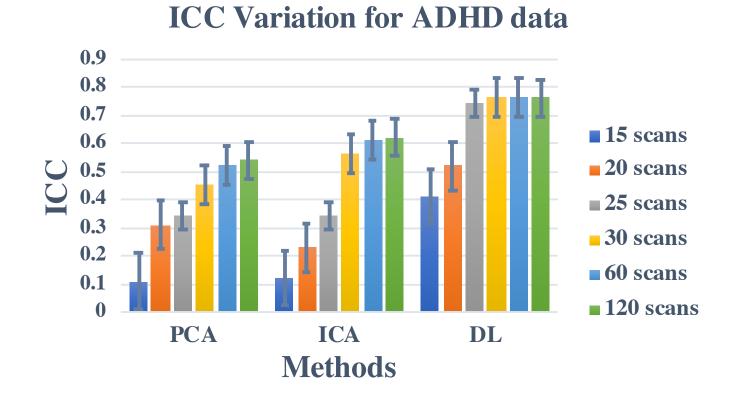
Experiment

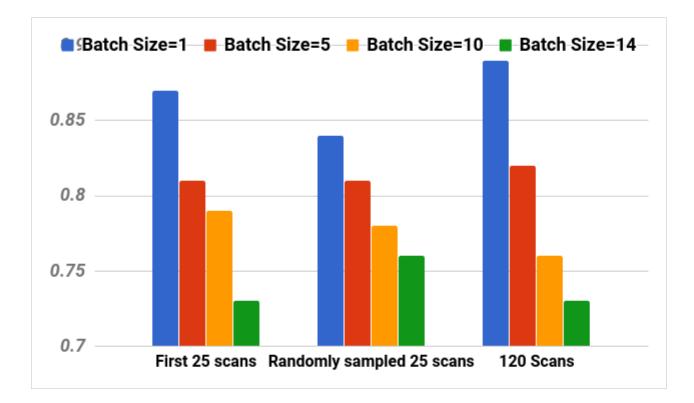
Reliability

- Qualitative: by plotting the activated RSNs
- Quantitative: by computing ICC (Intra-class Correlation Coefficient)

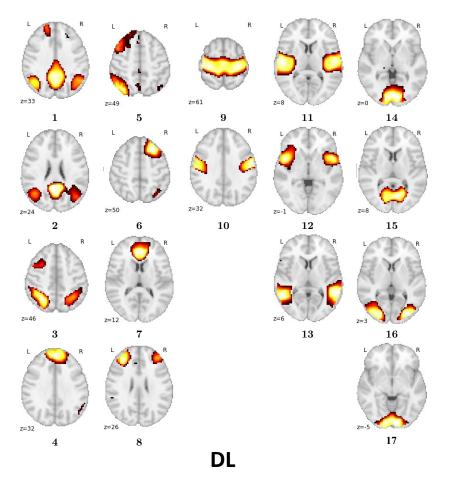

$$ICC = \frac{MSb - MSw}{MSb + (k-1)MSw}$$

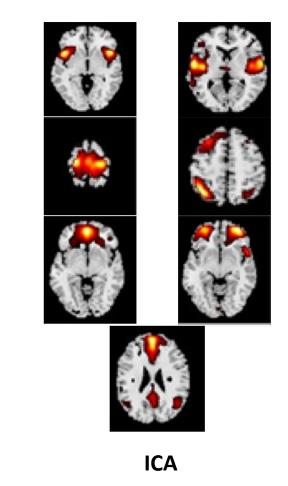
- **MSb** = between-subject mean squares
- **MSw** = within-subject mean squares
- **k** is number of fMRI datasets.
- ICC is close to 1 when MSb >> MSw


Results : Scan sampling


Results : Scan sampling

Results : Subject sampling


Results : RSN estimation


	Number of scans							
Method	5	10	15	20	25	30	60	120
	Number of functional networks obtained							
Group- PCA	0	0	1	2	4	5	7	9
Group- ICA	0	0	1	5	7	7	15	17
DL	0	3	7	14	17	17	17	17

Results: RSNs with 25 initial scans

Conclusions

- A total of 25 number of scans amounting about 1-minute are enough for Dictionary Learning to effectively distinguish distinct resting state networks.
- High quality spatially localized ICNs with high ICC values can be identified by DL with limited amount of data

PCA < ICA < DL

- Sparsity might be a better constraint for rs-fMRI analysis
- Faster computation
- The neuroscience research in clinical, pediatrics or aging population could greatly benefit with this approach even with limited amount of data.
- Further verification required with varying TR and voxel resolution

Acknowledgments

- NIH-R03 DC013990 (PI: Wang)
- University of Texas System Brain Research grant (PI: Wang)
- Dr. Bart Rypma and Dr. Vinayak Abrol
- IEEE SPS travel grant

Debadatta Dash

Dr. Anil K. Sao

Dr. Jun Wang

Dr. Bharat Biswal

Thank you