

BEM-based UKF Channel Estimation for 5G-enabled V2V Channel

Xuanfan Shen¹, Yong Liao¹ and Xuewu Dai²

1 Chongqing University, Chongqing, China

2 Northumbria University, Newcastle upon Tyne, United Kingdom

Background

High-Speed Environment

Doubly-selective channel:

- · Multipath effects
- · Doppler effects

Challenge:

Time and frequency selective fading

Solution:

Time domain channel estimation method

Non-stationary channel:

- The Channel Impulse Response (CIR) is changing during an OFDM symbol
- Time correlation coefficients are time-varying Solution:
- Joint estimating the CIR and time correlation coefficients

Background

BEM

The Basis Expansion Model (BEM) is used to compresses the CIR into a low-dimensional space based on a series of base vectors, which effectively reduce the space complexity of time domain channel estimation. UKF

The Unscented Kalman Filter (UKF) is a more effective state estimation method for non-linear state space model. For certain systems, the resulting UKF filter more accurately estimates the true mean and covariance.

where R_i is the correlation matrix of coefficients of BEM for adjacent OFDM symbols, v_i is the process noise with variance σ_v^2 . And the correlation matrix is a diagonal matrix under CE-BEM.

BEM-based UKF

State Prediction

- 1. Generating sigma points.
- 2. Substituting the sigma points into the transformation equation.

3. Calculating the means of the *a priori* state variable and covariance matrix.

State Updating

- 1. Generating sigma points.
- 2. Substituting.

3. Calculating the mean, covariance matrix and cross covariance matrix of measurement variable.

4. Computing the gain of fileting and the a posterior estimates and covariance matrix of state variable.

PART FOUR Simulation and Analysis

Simulation

Parameters

•

Table 1 Parameters of Simulation System

Parameters	Value
Frequency of carrier	2.8 GHz
Bandwidth	5 MHz
Number of subcarriers	300
Length of FFT	512
Length of CP	36
Dimension of base vectors Q	16
Modulation	QPSK
Non-stationary channel	WINNER-II D2a

Conclusion

The BEM is adopted to reduce the complexity of channel estimation and eliminate the ICI (intercarrier interference).

An UKF-based method is proposed to jointly estimate CIR and time-varying time correlation coefficients in a non-linear state space model.

The performances of proposed BEM-based UKF channel estimation and interpolation method in different speed environments is analyzed.

Attempt to apply Artificial Intelligence (AI) to channel estimation in high-speed mobile environment.

Research Channel estimation based on superimposed pilot and data symbols.

