Backdoor Attacks on Neural Network Operations

Joseph Clements and Yingjie Lao

Secure and Innovative Computing Research Group

Department of Electrical and Computer Engineering, Clemson University

Machine Learning Revolution

(https://www.lawtechnologytoday.org/2015/08/5-questions-on-artificial-intelligence/)

Machine Learning Revolution

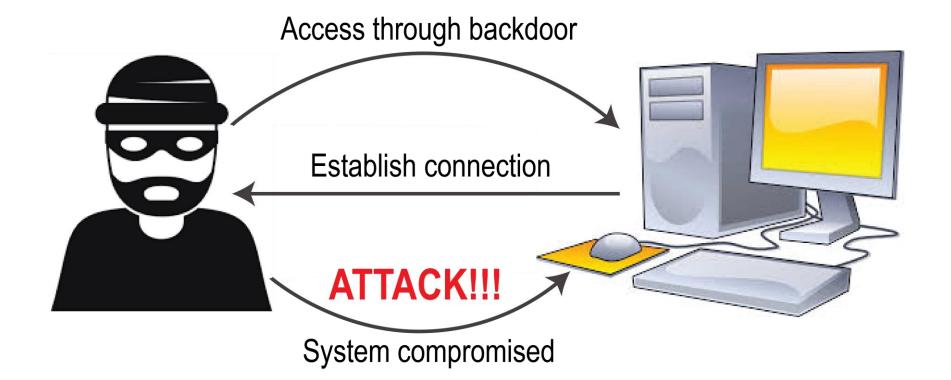
(https://www.lawtechnologytoday.org/2015/08/5-questions-on-artificial-intelligence/)

(https://www.lawtechnologytoday.org/2015/08/5-questions-on-artificial-intelligence/)

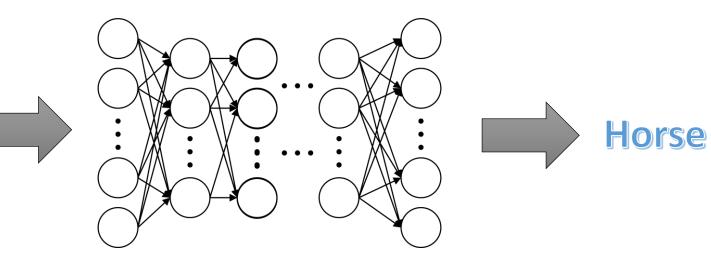
Security of Machine Learning

- Technology and human life are becoming increasingly intertwined.
- ML is vulnerable to both exploratory and causative attacks.
- Must be applied in a safety conscious manor.

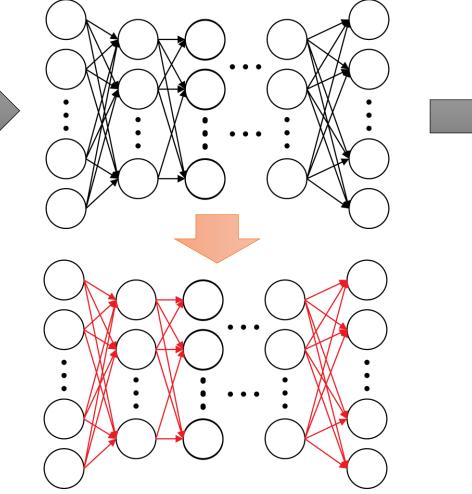
Backdoor Injection Attacks



Backdoors in Machine Learning

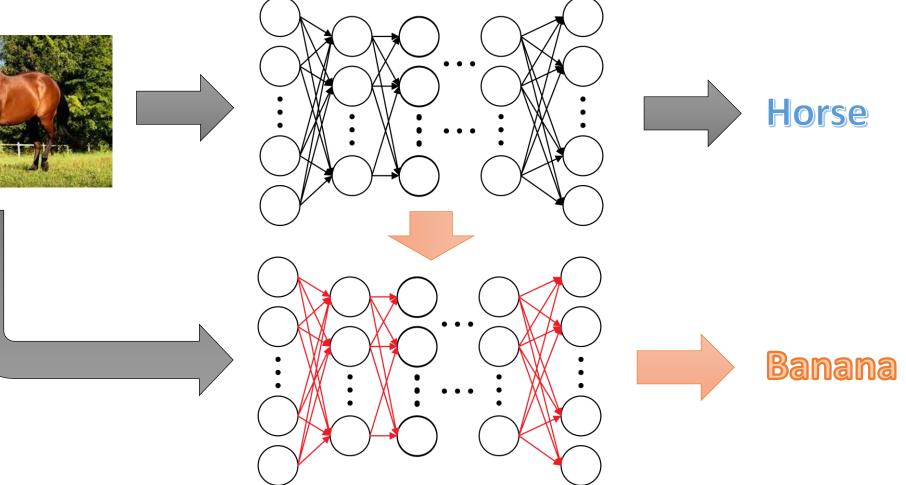


Backdoors in Machine Learning

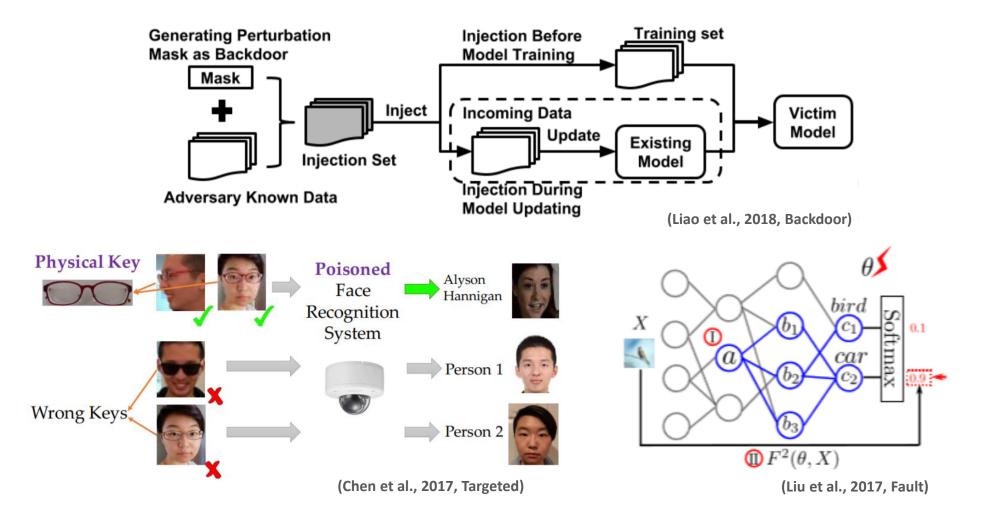


GlobalSIP 2018

Backdoors in Machine Learning

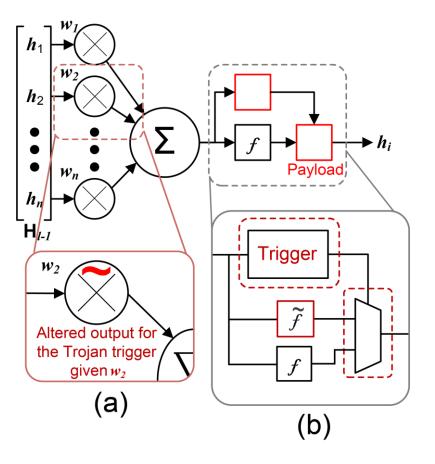


Backdoor Injection

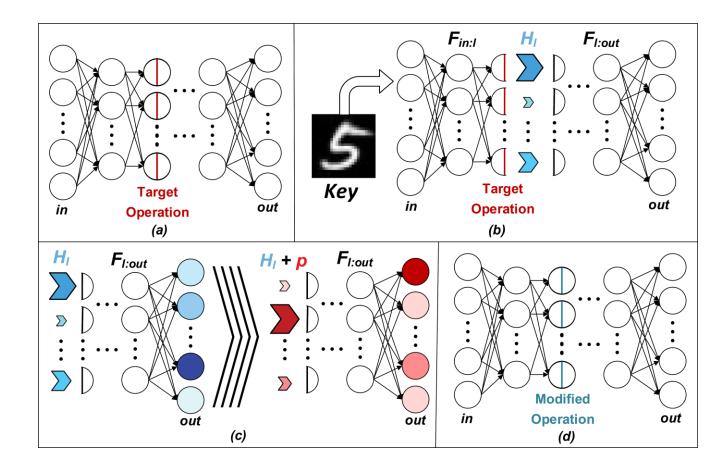


An Alternate Perspective

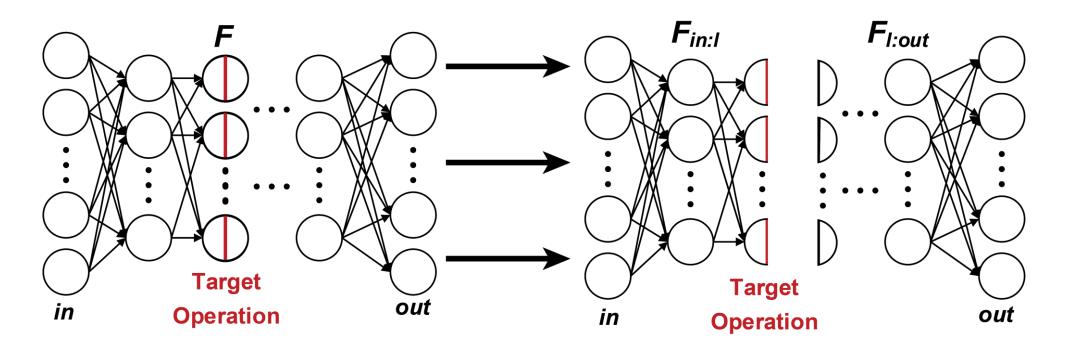
- Target the network operations.
- Conducted on the underlying implementation of the network.
- Cannot be discovered by analyzing the model architecture or weights.



Methodology Overview

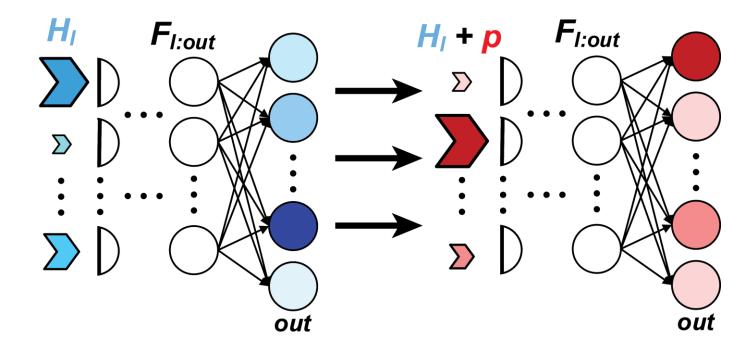


Isolating the Target Operation



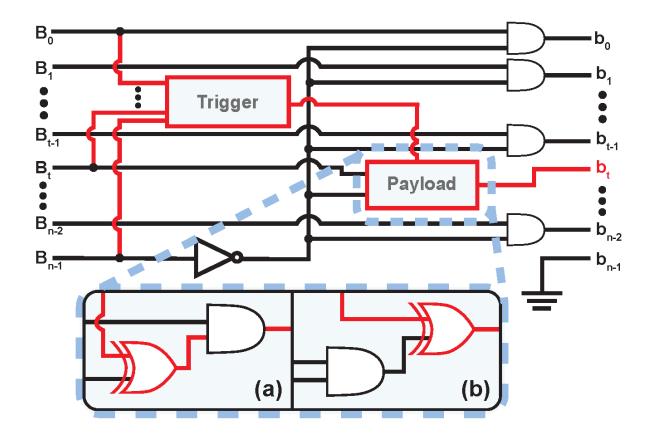
The intermediate activation of any operation in the network can be discerned for a give input key.

The Required Perturbation

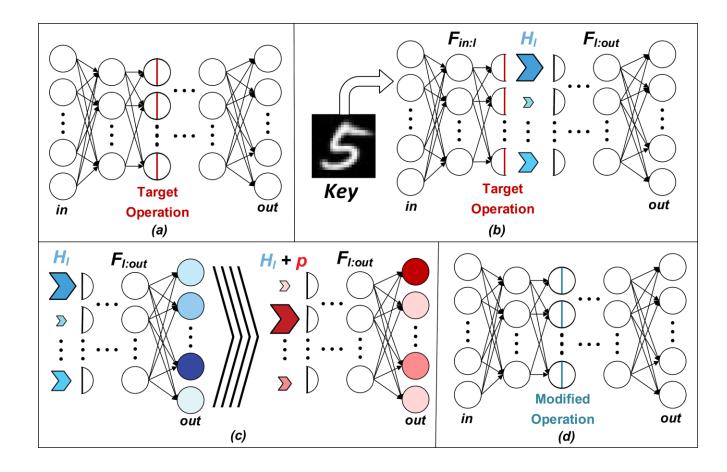


Plug and play methodology utilizing modified adversarial examples attacks.

Modifying the Operations



Attack Summary



	MNIST		CIFAR-10	
layer	type	# neurons	type	# neurons
1	conv 20	15680	conv 32	28800
2	conv/max 40	31360	conv/max 64	50176
3	conv 60	11760	conv/max 128	18432
4	conv/max 80	15680	conv/max 128	2048
5	conv 120	5880	dense	1024
6	dense	150	dense	180
7	dense	10	dense	10

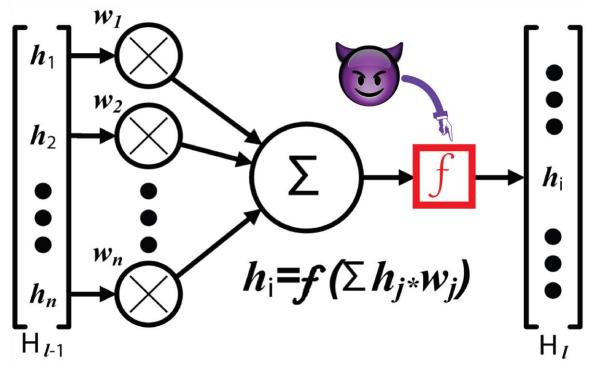
Attack Scenarios

- Force misclassifications
- Well-crafted input keys
- Targeted and untargeted scenarios

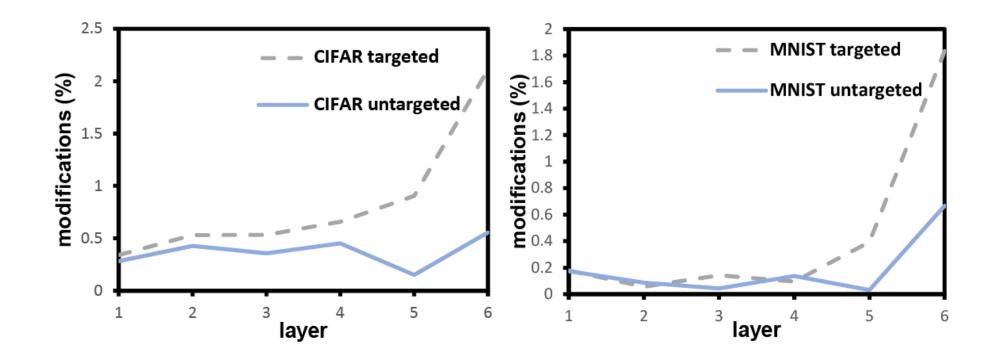
5 *** 2 **** 9 *** Dog **** Cat 5 *** ? *** ? *** ??? *** ???

Experimental Setup

- Target operation: activation function
- All layers excluding the primary output
- Perturbation generated by modified JSMA attack



Experimental Results



Conclusion

- Neural networks are susceptible to attack through their fundamental implementations.
- The proposed methodology can be used as a framework to mount attacks which inject backdoors into a neural network through the alteration of its basic operations.
- This attack is performed orthogonally to all existing backdoor injection attacks.

Thank you!