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Motivation



Problem Statement
Monitors Rumour Source

𝑡 = 1 𝑡 = 2 𝑡 = 3

𝑡 = 4 𝑡 = 5 𝑡 = 6



Problem Statement and Assumptions

Network topology

• General graph with small-world property.

Epidemic model

• Discrete-time version of susceptible-infected model.

• Constant transmission rate within the network.

Observation model

• Known graph topology.

• Monitoring of a small fraction of nodes.



Problem Statement and Assumptions

Source localisation problem

• A source emits 𝑅 rumours, at 𝑡0 = 0.

• We observe some monitors, at discrete times t ∈ {0, 1, … , 𝑇}.

• The probability of infection of a monitor 𝑖 at time 𝑡 is given by:

෨𝐹𝑖 𝑡 =
𝑅𝑖(𝑡)

𝑅
,

where 𝑅𝑖(𝑡) is the number of rumours which have reached 𝑖 by time 𝑡.

• We aim to leverage the divergence of the monitor measurements from an 

analytical probability of infection.



Approach I to Model Diffusion in a Network

What is the probability a node 𝑖 gets first infected at time 𝑡, 𝑓𝑖(𝑡) ?

𝑓𝑖 𝑡 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵

𝜇 is the constant transmission rate

Derivation in spirit with the methods presented in:

[1] M. Gomez-Rodriguez, D. Balduzzi, B. Schölkopf. Uncovering the Temporal Dynamics of Diffusion Networks.

[2] A. Lokhov, M. Mézard, H. Ohta, L. Zdeborová. Inferring the origin of an epidemic with a dynamic message-passing algorithm.

[3] N. Ruhi, H. Ahn, B. Hassibi. Analysis of Exact and Approximated Epidemic Models over Complex Networks. 
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Approach I to Model Diffusion in a Network

What is the probability a node 𝑖 gets first infected at time 𝑡, 𝑓𝑖(𝑡) ?

𝐵 is the event of node 𝑖 being in a susceptible state at time 𝑡 − 1:

𝑃 𝐵 =ෑ

𝜏=1

𝑡−1

(1 − 𝑓𝑖 𝜏 )
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Approach I to Model Diffusion in a Network
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𝑃 𝐴 = 1 −ෑ

𝑗∈𝑁𝑖

[1 − 𝜇 × 𝐹 𝑥𝑗 𝑡 − 1 = 1 ]

neighbour 𝑗 does not transmit

none of neighbours transmit

neighbour 𝑗 infected



Approach I to Model Diffusion in a Network
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𝑃 𝐴 = 1 −ෑ

𝑗∈𝑁𝑖

[1 − 𝜇 × 𝐹 𝑥𝑗 𝑡 − 1 = 1 ]

The probability 𝑖 gets the rumour from at least one neighbour, given 𝑖
was previously in a susceptible state is: 

𝑃 𝐴|𝐵 = 1 −ෑ

𝑗∈𝑁𝑖

[1 − 𝜇 × 𝐹 𝑥𝑗 𝑡 − 1 = 1|𝒙𝒊 𝒕 − 𝟏 = 𝟎 ]



Approach I to Model Diffusion in a Network
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The probability a node 𝑖 gets first infected at time 𝑡, 𝑓𝑖(𝑡) is:

𝑓𝑖 𝑡 = [1 −ෑ

𝑗∈𝑁𝑖

(1 − 𝜇 × 𝐹 𝑥𝑗 𝑡 − 1 = 1|𝑥𝑖 𝑡 − 1 = 0 )] ×ෑ

𝜏=1

𝑡−1

(1 − 𝑓𝑖 𝜏 )

𝑃(𝐴|𝐵) 𝑃(𝐵)



Approach I to Model Diffusion in a Network
• The probability a node 𝑖 gets first infected at time 𝑡 is:

• We make the approximation:

𝑓𝑖 𝑡 ≈ [1 − ෑ

𝑗∈𝑁𝑖

(1 − 𝜇 × 𝐹 𝑥𝑗 𝑡 − 1 = 1 )] ×ෑ

𝜏=1

𝑡−1

(1 − 𝑓𝑖 𝜏 )

• The approximate probability a node 𝑖 is infected at time 𝑡 is:

𝐹𝑖 𝜏 ≈

𝑡=1

𝜏

[1 −ෑ

𝑗∈𝑁𝑖

(1 − 𝜇 × 𝐹 𝑥𝑗 𝑡 − 1 = 1 )] ×ෑ

𝜃=1

𝑡−1

(1 − 𝑓𝑖 𝜃 )

𝑓𝑖 𝑡 = [1 −ෑ

𝑗∈𝑁𝑖

(1 − 𝜇 × 𝐹 𝑥𝑗 𝑡 − 1 = 1|𝑥𝑖 𝑡 − 1 = 0 )] ×ෑ

𝜏=1

𝑡−1

(1 − 𝑓𝑖 𝜏 )

𝑃(𝐴|𝐵) 𝑃(𝐵)



Approach I to Model Diffusion in a Network
• The approximate probability a node 𝑖 is infected at time 𝑡 is:

𝐹𝑖 𝜏 ≈

𝑡=1

𝜏

[1 −ෑ

𝑗∈𝑁𝑖

(1 − 𝜇 × 𝐹 𝑥𝑗 𝑡 − 1 = 1 )] ×ෑ

𝜃=1

𝑡−1

(1 − 𝑓𝑖 𝜃 )

• Spreading of 1000 Rumors, small-world network, 200 Nodes, for distances 

1, 2, and 3 from the source:



Approach II to Model Diffusion in a Network
• Probability of infection based on the shortest distance to the source.

• Arrange the nodes according to the shortest distance to the destination.

• What is the probability of first infection of a node 𝑖 at distance 𝑑, at time 𝑡?

𝑑 = 5 𝑑 = 4 𝑑 = 3 𝑑 = 1

𝑆𝑜𝑢𝑟𝑐𝑒

𝑖



Approach II to Model Diffusion in a Network
• What is the probability of first infection of a node 𝑖 at distance 𝑑, at time 𝑡?

• Success: move closer to node 𝑖.

𝑑 = 5 𝑑 = 4 𝑑 = 3 𝑑 = 1

𝑆𝑜𝑢𝑟𝑐𝑒

𝑖

𝑑 = 5 𝑑 = 4 𝑑 = 3 𝑑 = 1

𝑆𝑜𝑢𝑟𝑐𝑒

𝑖

𝑡 = 3 𝑡 = 4

infected node

susceptible node



Approach II to Model Diffusion in a Network
• What is the probability of infection of a node 𝑖 at distance 𝑑, at time 𝑡?

• Failure: not spreading the rumour to a sufficient number of  nodes closer to 

the destination.

𝑑 = 5 𝑑 = 4 𝑑 = 3 𝑑 = 1

𝑆𝑜𝑢𝑟𝑐𝑒

𝑖

𝑑 = 5 𝑑 = 4 𝑑 = 3 𝑑 = 1

𝑆𝑜𝑢𝑟𝑐𝑒

𝑖

𝑡 = 3 𝑡 = 4

infected node

susceptible node



Approach II to Model Diffusion in a Network
• Number of paths is the number of ways to choose 𝑑 − 1 success steps of 𝑡 − 1

time steps: 𝑡−1
𝑑−1

.

• Probability of success: 𝑝𝑆.

• Probability of each path: 𝑝𝑆
𝑑 × (1 − 𝑝𝑆)

𝑡−𝑑.

• Approximate 𝑝𝑆 = 𝛼𝑑𝜇, where 𝜇 is the constant transmission rate in the graph.

𝑆𝑜𝑢𝑟𝑐𝑒

𝑖

S F S



Approach II to Model Diffusion in a Network
• Number of paths is: 𝑡−1

𝑑−1
.

• Probability of each path: 𝑝𝑆
𝑑 × (1 − 𝑝𝑆)

𝑡−𝑑.

• Set 𝑝𝑆 = 𝛼𝑑𝜇, where 𝜇 is the constant transmission rate in the graph.

• The probability of first infection is:

𝑓𝑑 𝑡 = (𝛼𝑑𝜇)
𝑑× (1 − 𝛼𝑑𝜇)

𝑡−𝑑×
𝑡 − 1

𝑑 − 1

• The probability of infection of a node at distance 𝑑 from the source at time 

𝜏 is:

𝐹𝑑 𝜏 ≈ 

𝑡=𝑑

𝜏

(𝛼𝑑𝜇)
𝑑× (1 − 𝛼𝑑𝜇)

𝑡−𝑑×
𝑡 − 1

𝑑 − 1

# of paths from source to destination𝑝𝑆



Approach II to Model Diffusion in a Network
• 1000 Rumors, small-world network, 200 Nodes:



Single Diffusion Source Detection Algorithm
• Estimate the distances between each monitor 𝑖 and the potential source, by 

computing the dissimilarity between the observed ෨𝐹𝑖 𝑡 and the theoretical 

𝐹𝑑 𝑡 .

• Create a set of potential sources using triangulation.

• Select the most likely rumour origin, using the approximate model of infection, 

given a rumour source 𝑠:

𝐹 𝑥𝑖(𝜏 = 1|𝑠) ≈

𝑡=1

𝜏

[1 − ෑ

𝑗∈𝑁𝑖

(1 − 𝜇 × 𝐹 𝑥𝑗 𝑡 − 1 = 1 )] ×ෑ

𝜃=1

𝑡−1

(1 − 𝑓𝑖 𝜃 )

• For each potential source 𝑠, compute the dissimilarity between empirical ෨𝐹𝑖 𝑡
and analytical 𝐹 𝑥𝑖(𝑇 = 1|𝑠). The most likely rumour origin is the node 

with the lowest dissimilarity.



Simulations
• 10 Rumors, small-world network, 1000 Nodes, 𝜇 = 0.5, 100 experiments.



Simulations
• 10 Rumors, Facebook network, 192 Nodes, 𝜇 = 0.5, 100 experiments.



Conclusion
• Mathematical models of information propagation, which accurately capture 

the diffusion process.

• Source detection algorithm, which assumes:

– Single source, which emits multiple rumours.

– All rumours start at the same time, which is known.

– A finite set of monitor nodes is observed at discrete times.

• Future extensions:

– Source detection with unknown start time.

– Multiple source detection algorithm.



Thank you for listening!



How do we find the optimal parameters 𝜶𝒅 in the 

distance-dependent probabilities?

• The distance-dependent probability of infection for a node at distance 𝑑, at 

time 𝑡 is:

𝐹𝑑 𝑡 = 

𝜏=𝑑

𝑡

(𝜇 × 𝛼𝑑)
𝑑× (1 − 𝜇 × 𝛼𝑑)

𝜏−𝑑×
𝜏 − 1

𝑑 − 1

• Artificially spread a number of rumours from a random node in the network, 

and obtain the empirical probabilities ෨𝐹𝑖 𝑡 .

• The optimal parameter 𝛼𝑑 minimizes the dissimilarity between 𝐹𝑑 𝑡 and ෨𝐹𝑖 𝑡
for a particular distance 𝑑:

𝛼𝑑
𝑜𝑝𝑡

= 𝑎𝑟𝑔𝑚𝑖𝑛𝛼𝑑 

𝑖∈𝑁𝑑



𝑡=0

𝑇

||𝐹𝑑 𝑡 − ෨𝐹𝑖 𝑡 ||
2 ,

where 𝑁𝑑 is the set of nodes at shortest distance 𝑑 from the source.



How do we estimate the shortest distances 

between monitor nodes and the source?

• We find the dissimilarity between the distance-dependent analytical 

probability of infection 𝐹𝑑 𝑡 , and the observed infection probability at a node 

𝑖, using mean-squared error.

• Then, the optimal distance for a monitor 𝑖 is:

𝑑𝑖,𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑑

𝑡=0

𝑇

||𝐹𝑑 𝑡 − ෨𝐹𝑖 𝑡 ||
2

• We select as potential sources all the nodes at distance 𝑑𝑖,𝑠 from node 𝑖.



How do we select the most likely rumour origin?

• Select the most likely rumour origin, using the approximate model of infection, 

given a rumour source 𝑠:

𝐹 𝑥𝑖(𝑇 = 1|𝑠) =

𝑡=1

𝑇

[1 −ෑ

𝑗∈𝑁𝑖

1 − 𝜇 × 𝐹 𝑥𝑗 𝑡 − 1 = 1 ] ×ෑ

𝜏=1

𝑡−1

(1 − 𝑓𝑖 𝜏 )

• For each potential source 𝑠, compute the dissimilarity between the observed 

infection probabilities of all monitors, and the theoretic model of infection:

ҧ𝐶 𝑠 =

𝑖



𝑡=0

𝑇

||𝐹 𝑥𝑖(𝑡 = 1|𝑠) − ෨𝐹𝑖 𝑡 ||
2

• The most likely rumour origin is the node with the lowest dissimilarity.



More simulation results

• 10 Rumors, small-world network, 1000 Nodes, varying spreading probability



More simulation results

• 10 Rumors, Facebook network, 192 Nodes, varying spreading probability



Probability of infection

• A node has the infection at time 𝑡 if it got initially infected at any of the times 

before, 𝜏 = 1,2, … , 𝑡.   

• The events of a node getting the initial infection at different times are mutually 

disjoint.

• Hence, the probability of infection is given by the sum of the likelihoods of first 

infection at different discrete times:

𝐹𝑖 𝑡 =

𝜏=1

𝑡

𝑓𝑖(𝜏)



Probability of being susceptible 

• A node is susceptible at time 𝑡 if it didn’t get infected at any of the times before, 

𝜏 = 1,2, … , 𝑡.   

• The events of a node not getting the initial infection at different times are 

mutually disjoint.

• Hence:

ത𝐹𝑖 𝑡 = ෑ

𝜏=1

𝑇

1 − 𝑓𝑖(𝜏)



Distance-dependent probability of infection
• Number of paths is: 𝑡−1

𝑑−1
.

• Probability of each path: 𝑝𝑆
𝑑 × (1 − 𝑝𝑆)

𝑡−𝑑.

• A node at distance 𝑑 gets infected if any succession of 𝑑 success steps, and 

𝑡 − 𝑑 failure steps happens.

• Different successions of S and F events are mutually disjoint.

• Hence, the probability of first infection is:

𝑓𝑑 𝑡 = (𝛼𝑑𝜇)
𝑑× (1 − 𝛼𝑑𝜇)

𝑡−𝑑×
𝑡 − 1

𝑑 − 1

# of paths from source to destination
𝑝𝑆



Distance-dependent probability of infection
• A node at distance 𝑑 gets infected if any succession of 𝑑 success steps, and 

𝑡 − 𝑑 failure steps happens.

• There can by a success following a failure, at the next time step.

𝑑 = 5 𝑑 = 4 𝑑 = 3 𝑑 = 1

𝑆𝑜𝑢𝑟𝑐𝑒

𝑖

𝑑 = 5 𝑑 = 4 𝑑 = 3 𝑑 = 1

𝑆𝑜𝑢𝑟𝑐𝑒

𝑖

t = 3 t = 4



Comparison to existing methods
• The authors in [1] propose a Monte Carlo method for single source 

estimation, with unknown infection time. In a random geometric graph, the 

probability of the origin to be within the first 10% ranked nodes is around 0.5

when observing 5% of the network, increasing to 0.9 when observing the 

full network.

• In a small-world network, our method achieves correct detection probability 

of 0.75 when observing 5% of the network, and 1 when observing the full 

network. The number of rumours is 2, and the rumour start time is known.

[1] A. Agaskar and Y. M. Lu. A fast Monte Carlo algorithm for source localization on graphs.


