

Introduction > Deep neural networks (DNNs) are known vulnerable to adversarial attacks > Adversarial examples in adversarial attacks: adding delicately crafted distortions onto original legal inputs, can mislead a DNN to classify them as any target labels. $\succ L_p$ norms of the distortion: the added distortions are usually measured by L_0, L_1, L_2 , and L_∞ norms in L_0, L_1, L_2 , and L_∞ attacks. "panda" 57.7% confidence ➤ A unified framework: this work for the first time unifies the methods of generating adversarial examples by leveraging ADMM. L_0, L_1, L_2 , and L_∞ attacks are effectively implemented by this general framework with little modifications. Notations and Definitions > Representations of the DNN model: input: $\mathbf{x} \in \mathbb{R}^{hw}$ or $\mathbf{x} \in \mathbb{R}^{3hw}$ model: $F(\mathbf{x}) = \mathbf{y}$ output: $0 \le y_i \le 1$ and $y_1 + y_2 + \dots + y_m = 1$ logits: $F(\mathbf{x}) = \operatorname{softmax}(Z(\mathbf{x})) = \mathbf{y}$. classification: $C(\mathbf{x}) = \arg \max y_i$ distance: $\|\mathbf{x} - \mathbf{x}_0\|_p = \left(\sum_{i=1}^n |\mathbf{x}_i - \mathbf{x}_{0i}|^p\right)^{\overline{p}}$ > Adversarial attack: $\min_{\boldsymbol{\delta}} D(\boldsymbol{\delta}) + g(\mathbf{x} + \boldsymbol{\delta})$ subject to $(\mathbf{x} + \boldsymbol{\delta}) \in [0, 1]^n$, $g(\mathbf{x}) = c \cdot \max\left(\left(\max_{i \neq t} \left(Z(\mathbf{x})_i\right) - Z(\mathbf{x})_t\right), -\kappa\right)$ **ADMM** Formulation > Reformulate the original problem: minimize $D(\boldsymbol{\delta}) + g(\mathbf{x} + \mathbf{z}) + h(\mathbf{w})$ $\delta_{z,w}$ $h(\mathbf{w}) = \{$ subject to $\mathbf{z} = \boldsymbol{\delta}$

> The augmented Lagrangian function:

 $\mathbf{w} = \mathbf{x} + \mathbf{z},$

$$\begin{split} L(\boldsymbol{\delta}, \mathbf{z}, \mathbf{w}, \mathbf{u}, \mathbf{v}) = & D(\boldsymbol{\delta}) + g(\mathbf{x} + \mathbf{z}) + h(\mathbf{w}) \\ &+ \mathbf{u}^T (\boldsymbol{\delta} - \mathbf{z}) + \mathbf{v}^T (\mathbf{w} - \mathbf{z} - \mathbf{x}) \\ &+ \frac{\rho}{2} \|\boldsymbol{\delta} - \mathbf{z}\|_2^2 + \frac{\rho}{2} \|\mathbf{w} - \mathbf{z} - \mathbf{x}\|_2^2, \end{split}$$

$$\mathbf{x}_{\lambda 2}(\mathbf{s}) = \begin{cases} (1 - \lambda / \|\mathbf{s}\|_{2})\mathbf{s} & \|\mathbf{s}\|_{2} \ge \lambda \\ 0 & \|\mathbf{s}\|_{2} < \lambda \end{cases}$$
$$\mathbf{x}_{\lambda 0}(\mathbf{s}))_{i} = \begin{cases} 0 & |s_{i}| < \sqrt{2\lambda} \\ 0 \text{ or } s_{i} & |s_{i}| = \sqrt{2\lambda} \\ s_{i} & |s_{i}| > \sqrt{2\lambda} \end{cases}$$
$$\mathbf{px}_{\lambda 1}(\mathbf{s}))_{i} = \begin{cases} s_{i} - \lambda & s_{i} \ge \lambda \\ 0 & |s_{i}| < \lambda \\ s_{i} + \lambda & s_{i} \le -\lambda \end{cases}$$

$$(-t^*)_+ = 1$$
 δ_i^*

A dynamical attach

								Data Set	Methods	Best Case		Average Case		Worst Case	
		L_0 a	ttack					MNIST	$ IFGM(L_1) \\ EAD(L_1) $	ASR 100 100	L_1 17.3 7.74	ASR 100 100	L_1 34.6 14.16	ASR 100 100	L_1 58.4 21.38
Dataset	Attack method	Best ASR	$case$ L_0	Averag ASR	$\frac{\text{ge case}}{L_0}$	Worst caseASR L_0			$\begin{array}{ c c } ADMM(L_1) \\ \hline IFGM(L_1) \\ \hline \end{array}$	100	6.29 5.96	100	12.35	100	20.8
MNIST	$\begin{array}{c} C\&W(L_0)\\ ADMM(L_0) \end{array}$	$\begin{array}{c} 100 \\ 100 \end{array}$	$7.88 \\ 6.94$	100 100	$\begin{array}{c} 16.58 \\ 13.35 \end{array}$	100 100	$29.84 \\ 23.66$	CIFAR-10	$\begin{array}{ c c } EAD(L_1) \\ ADMM(L_1) \end{array}$	100 100	1.94 1.75	100 100	4.62 3.750	100 100	7.25 5.92
CIFAR	$\begin{array}{c} C\&W(L_0)\\ ADMM(L_0) \end{array}$	100 100	8.16 7.64	100 100	20.82 18.78	100 100	35.07 32.81	ImageNet	$\begin{array}{c} \operatorname{IFGM}(L_1) \\ \operatorname{EAD}(L_1) \\ \operatorname{ADMM}(L_1) \end{array}$	$ 100 \\ 100 \\ 100 $	$298 \\ 60.98 \\ 49.17$	$ 100 \\ 100 \\ 100 $	$580 \\ 112.7 \\ 75.2$	100 100 100 100	$ \begin{array}{r} 685 \\ 185 \\ 127 \end{array} $

Data Set	Attack Mathod		Best	t Case			Avera	ge Case		Worst Case				
	Attack Method	ASR	L_2	L_1	L_{∞}	ASR	L_2	L_1	L_{∞}	ASR	L_2	L_1	L_{∞}	
MNIST	$\operatorname{FGM}(L_2)$	99.3	2.158	23.7	0.562	43.2	3.18	37.6	0.761	0	N.A.	N.A.	N.A.	
	$\operatorname{IFGM}(L_2)$	100	1.61	18.2	0.393	99.7	2.43	31.8	0.574	99.3	3.856	54.1	0.742	
	$C\&W(L_2)$	100	1.356	13.32	0.394	100	1.9	21.11	0.533	99.6	2.52	30.44	0.673	
	$\mathrm{ADMM}(L_2)$	100	1.268	15.93	0.398	100	1.779	25.06	0.444	99.9	2.269	34.7	0.561	
CIFAR-10	$FGM(L_2)$	99.7	0.418	13.85	0.05	40.6	1.09	37.4	0.62	1.2	4.17	119.3	0.43	
	$\operatorname{IFGM}(L_2)$	100	0.185	6.26	0.021	100	0.419	14.9	0.043	100	0.685	22.8	0.0674	
	$C\&W(L_2)$	100	0.170	5.721	0.0189	100	0.322	11.28	0.0347	100	0.445	15.79	0.0495	
	$\operatorname{ADMM}(L_2)$	100	0.163	5.66	0.0192	100	0.315	10.97	0.0354	100	0.427	15.05	0.0502	
	$\operatorname{FGM}(L_2)$	15	2.37	815	0.129	3	7.51	2104	0.25	0	N.A.	N.A.	N.A.	
ImageNet	$\operatorname{IFGM}(L_2)$	100	0.984	328	0.031	100	2.38	795	0.079	97.6	4.59	1354	0.177	
	$C\&W(L_2)$	100	0.449	126.8	0.0159	100	0.621	198	0.0218	100	0.81	272.3	0.031	
	$\mathrm{ADMM}(L_2)$	100	0.412	112.5	0.017	100	0.555	166.7	0.021	100	0.704	225.6	0.0356	

> Adversarial examples of ADMM attacks

adversarial examples original 30 5 5 6 9 0 9 (a) MNIST koala(origina

Experimental Results

L_1 attack

L_2 attack

<----/

_____,

(b) CIFAR-10

Adversarial examples on ImageNet, where an input of koala can be classified as other target labels by adding small distortions.