Reinforced Adversarial Attacks on

Northeastern

Deep Neural Networks Using ADMM

${ }^{2}$ College of Engineering \& Computer Science, Syracuse University;

Introduction
$>$ Deep neural networks (DNNs) are known vulnerable to adversarial attacks > Adversarial examples in adversarial attacks: adding delicately crafted distortions onto original legal inputs, can mislead a DNN to classify them as any target labels. $>L_{p}$ norms of the distortion: the added distortions are usually measured by L_{0}, L_{1}, L_{2}, and L_{∞} norms in L_{0}, L_{1}, L_{2}, and L_{∞} attacks. $>$ A unified framework: this work for the first time unifies the methods of generating adversarial examples by leveraging ADMM. L_{0}, L_{1}, L_{2}, and L_{∞} attacks are effectively implemented by this general framework with little modifications. Notations and Definitions $>$ Representations of the DNN model: input: $x \in \mathrm{R}^{h w}$ or $x \in \mathrm{R}^{3 h w}$ model: $F(x)=y$ output: $0 \leq y_{i} \leq 1$ and $y_{1}+y_{2}+\cdots+y_{m}=1$ logits: $\quad F(\boldsymbol{x})=\operatorname{softmax}(Z(\boldsymbol{x}))=\boldsymbol{y}$ classification: $\quad C(\boldsymbol{x})=\arg \max y_{i}$ distance: $\left\\|x-x_{0}\right\\|_{p}=\left(\sum_{i=1}^{n}\left\|x_{i}-x_{0 i}\right\|^{p}\right)^{\frac{1}{p}}$ > Adversarial attack: $\begin{gathered} \underset{\boldsymbol{\delta}}{\operatorname{minimize}} \quad D(\boldsymbol{\delta})+g(\mathbf{x}+\boldsymbol{\delta}) \\ \text { subject to } \quad(\mathbf{x}+\boldsymbol{\delta}) \in[0,1]^{n}, \\ g(\boldsymbol{x})=c \cdot \max \left(\left(\max _{i \neq t}\left(Z(\boldsymbol{x})_{i}\right)-Z(\boldsymbol{x})_{t}\right),-\kappa\right) \end{gathered}$ $Z(x)$: logits before softmax layer ADM M Formulation $>$ Reformulate the original problem: $\begin{array}{ll} \underset{\boldsymbol{\delta}, \mathbf{z}, \mathbf{w}}{\operatorname{minimize}} & D(\boldsymbol{\delta})+g(\mathbf{x}+\mathbf{z})+h(\mathbf{w}) \\ \text { subject to } & \mathbf{z}=\boldsymbol{\delta} \\ & \mathbf{w}=\mathbf{x}+\mathbf{z}, \end{array} \quad h(\mathbf{w})=\left\{\begin{array}{cc} 0 & \mathbf{w} \in[0,1]^{n} \\ \infty & \text { otherwise } \end{array}\right.$ > The augmented Lagrangian function: $\begin{aligned} L(\boldsymbol{\delta}, \mathbf{z}, \mathbf{w}, \mathbf{u}, \mathbf{v})= & D(\boldsymbol{\delta})+g(\mathbf{x}+\mathbf{z})+h(\mathbf{w}) \\ & +\mathbf{u}^{T}(\boldsymbol{\delta}-\mathbf{z})+\mathbf{v}^{T}(\mathbf{w}-\mathbf{z}-\mathbf{x}) \\ & +\frac{\rho}{2}\\|\boldsymbol{\delta}-\mathbf{z}\\|_{2}^{2}+\frac{\rho}{2}\\|\mathbf{w}-\mathbf{z}-\mathbf{x}\\|_{2}^{2} \end{aligned}$

