Bourns College of Engineering Video Computing Group

- Frame reconstruction is critical in applications like retrieving missing frames in surveillance videos, anomaly detection, data compression, video editing, video postprocessing, animation, spoofing and so on.
- When multiple frames are missing and adjacent frames within the camera are far apart, realistic coherent frames can still be reconstructed using corresponding frames from other overlapping cameras.

3. Solution Overview

4. Network Architecture

MULTI-VIEW FRAME RECONSTRUCTION WITH CONDITIONAL GAN Tahmida Mahmud, Mohammad Billah, Amit K. Roy-Chowdhury University of California, Riverside

2. Contributions

We tackle a novel problem of frame reconstruction in multi-camera scenario using an adversarial approach.

We perform extensive experiments on a challenging multi-camera video dataset to show the effectiveness of our method and on a single-camera video dataset to provide quantitative comparison with the state-ofthe-art.

- We learn the representations of the missing frame conditioned on the preceding and following frames within the camera and on the corresponding frames in other overlapping cameras using cGAN.
 - These representations are merged together using a weighted average where the weights are chosen by maximizing the average PSNR on a smaller validation set.
 - "U-Net"-based architecture of the connections generator with skip which directly connect encoder layers to decoder layers.
 - The discriminator tries to differentiate patch-level and runs convolutationally across the image to generate an averaged output.

							Ę
Past intra-ca	imera frame	• x • Gen	erator	Genera	ated fram	ne G(x)	scrimir
Past intra-	camera fran	ne x	Missin,	g frame	y	D	iscrimin
						6.	Dat
KTH Human Action Dataset: Single dataset with 6 types of human activities							
		Metho	od		PSNR	SSIN	1
	Proposed Method				35.03	0.93	
	LSTM-Based Method [24]				35.40	0.96	
Table1.Single-viewReconstructionPerfornComparisons for KTH Human Action Dataset.							
Office Lobby Dataset: Multi-view dataset video clips captured by 3 cameras							
	Gap (frames)	1	3	5	7	15	30
	PSNR	32.06	29.28	28.10	27.19	25.56	25.17
	SSIM	0.95	0.92	0.91	0.90	0.88	0.87
Table 2. Multi-view Reconstruction Performance for Office							
	Gap (frames)	1	3	5	7	15	30
	Single	32.06	29.24	28.02	27.02	24.17	23.97
Multi 32.06 29.28 28.10 27.19 25.56 25.17 Table 3. Ablation Study for Frame Reconstruction in Off considering Single-View vs. Multi-View.							

7. Acknowledgements

5. Model Training Approach

- function.
- and the training maximizes log D(x, G(x, z)).
- 0.0002.

tasets and Experimental Results

e-view

nance

with 3

Lobby Dataset.

fice Lobby Dataset

Fig 1. Two examples from Office Lobby Dataset where Input 1, Input 2, Input 3, and Input 4 are the preceding and the following frames of camera 1, and the corresponding frames of camera 2 and 3 respectively. As we increase the gap between the preceding and following frames with the missing frame, frames of camera 2 and camera 3 become more important. For example, due to the large number of missing frames in gap 30, the women in red dress is not visible yet in input 1 and her position is far away in input 2. Still, a person wearing a red dress is visible in the correct position of the generated frame incorporating information from the other two cameras.

 $G^* = E_{x,y}[\log D(x,y)] + E_{x,z}[\log(1 - D(x, G(x,z)))]$ $+ \lambda E_{x,y,z}[||y - G(x,z)||_1]$

We use a combination of L1 loss and adversarial loss in the objective

We alternate between a gradient descent step upon D and one upon G

To optimize the network, we use a minibatch stochastic gradient descent with an adaptive subgradient method (Adam) and a learning rate of