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Synthetic Aperture Concept
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Phased Array Operation

As a plane wave propagates across the aperture, the incremental delay
between elements corresponds to a phase shift of 2π

λ ndsinθ
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Synthetic Aperture

Want to capture a propagating plane wave by uniformly sampling 

space along a planar grid

Direction of 

propagation

Assume signal arrives from a source that 

is far enough away that the signal 

wavefronts are well approximated by 

straight lines (far field assumption)

Far field distance = 2D2/λ where D is the 

largest dimension of the antenna aperture θ

λ/2

k = 0 k = 1

k = N - 1
λ/2

Sample space at N=NxNy locations spaced λ/2 apart.  This samples 

the virtual antenna aperture at twice the spatial frequency of the 

carrier to prevent spatial aliasing (grating lobes) from occurring
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Plane Wave Assumption

Radiating Source

Reactive Field

0 < R < λ/2π

Near Field

λ/2π < R < 2D2/λ

Far Field

R > 2D2/λ

Spherical Wave Fronts

Plane Wave Front

Receive Aperture

D

R

R

R

δ

In the far field, the largest phase difference between the spherical 

wave and the plane wave corresponding to the path length difference 

δ satisfies

Φerror = (2π/λ)δ ≤ π/8 = 22.5°
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Advantages of Synthetic Apertures
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Evolution of Digital Arrays

ADC

1.  Dynamic range 
limited: (ADC sees full 
signal amplitude 
including  horn gain)
2.  Binary AOA 
estimation: (signal in 
main beam or not) 

ADC

Phased Array with Corporate FeedHorn Antenna

1.  Dynamic range 
limited: (ADC sees full 
integration gain of array 
beamformer)
2.  Binary AOA 
estimation: (signal in 
main beam or not, no 
AOA performance in 
sidelobes) 

Analog Coherent Sum

Phased Array using Digital Subarrays

Isotropic Array Elements

Digital Coherent Sum

ADC

1.  Dynamic range improvement: (ADC sees 
lower integration gain of subarray)
2.  Improved AOA estimation possible if 
digitized subarray outputs are available.  
Otherwise binary AOA performance (signal in 
main beam or not) 
3.  Scan angles are limited to subarray 
beamwidth

ADC

Analog Coherent SumAnalog Coherent Sum

Array Pattern
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Every Element Digitization

Digital Coherent Sum

1. Maximum dynamic range:  ADC sees signal output of single element
2. Maximum AOA performance:  Full resolution of array aperture available
3. Output of every element digitized:  Maximum degrees of freedom for AOA
4. Arbitrary scan angles
5. Hugely expensive
6. Lots of data

ADC ADC ADC

Multichannel Phased Array

ADC ADC ADC

Synthetic aperture attains AOA estimation performance 
equivalent to a large multichannel phased array at a tiny 

fraction of the cost!
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Experiment Configuration
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Laboratory Environment

Synthetic aperture created using precise mechanical positioner
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Overview of Maximum Likelihood Estimation
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Array Signal Model

The complex signals received by the virtual array are,

x(k) =
D∑

j=1
a(uj , vj)sk(k) + n(k)

where a(u, v) is a steering vector, sj(k) is a baseband sample of the jth
signal, n(k) is additive noise vector, D is the number of signal sources

For data collected over N array snapshots,

X = A(u,v)S + N

where X = [x(1), . . . ,x(N)], A(u,v) = [a(u1, v1), . . . ,a(uN , vN )],

N = [n(1), . . . ,n(N)], S = [s(1), . . . , s(N)]
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Steps to Compute ML Estimator

Compute joint probability density function of the sampled data
Compute the likelihood function
Maximize the likelihood function with respect to the unknown
parameters
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Joint PDF and Likelihood Function

The joint PDF of X = [x(1), . . . ,x(N)] is,

f(X) =
N∏

k=1

1
πdet[σ2I]

exp
[

1
σ2 |x(k)−A(u,v)s(k)|2

]

The log-likelihood function is,

J(u, v) = −ND log σ2 − 1
σ2

N∑
k=1

|x(k)−A(u,v)s(k)|2
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Optimization Function

The optimization program to be solved is,

max
u,v

J(u,v) = max
u,v

tr[PA(u,v)R̂xx]

PA(u,v) = A(u,v)[A(u,v)HA(u,v)]−1A(u,v)H = A(u,v)A(u,v)†

and R̂xx = 1
N

∑N−1
k=0 x(k)x(k)H
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Solving the Optimization Program

The ML angle estimates are obtained by searching over the array
manifold for those D steering vectors that form a D-dimensional
signal subspace closest to the measured data vectors
x(1), . . . ,x(N)
“Closeness” is measured by the norm of the projection of the x(k)
vectors onto the signal subspace
The Alternating Projections (AP) algorithm maximizes J(u,v)
with respect to one parameter while holding the other parameters
fixed
Since J(uk, vk) will have multiple local maximas, proper
initialization is critical for global convergence
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Alternating Projections Algorithm

Algorithm searches for peak along lines parallel to the coordinate axes
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Gradient Vector and Hessian Matrix

The gradient vector is determined by computing the directional
derivative of the cost function J(p;d),

J ′(p;d) = ∇J(p)Td,

for p = [uk vk]T ,d = [δuk
δvk

]T

The Hessian matrix H(p) is determined by computing the Taylor series
expansion of J(p + d) and retaining the second order terms,

J(p + d) ≈ dTH(p)d + other terms

The gradient vector and the Hessian matrix can be used to implement
the conjugate gradient algorithm and Newton’s method respectively
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Alternating Projections Algorithm Initialization
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Spatial Spectrum of Raw Data

Output of 2-D FFT Across Array Elements for Fixed Delay Index

X(u
λ , v

λ) =
∑

n

∑
m s(k)e[−j2π

λ
(mdxu+ndyv)]
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Measured Results
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Multipath Environment in Lab

Measured data shows scattering from cabinet
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Angle and Delay Plots

High sidelobes in angular domain due to FFT processing are visible
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Cost Function: MPC-1

Data quality helps optimization program converge quickly
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Cost Function: MPC-2

The global cost function has several peaks and valleys
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Cost Function: MPC-3
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Convergence: MPC-1

Algorithm converges in a few iterations
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Convergence: MPC-2
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Convergence: MPC-3
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CG vs Newton: MPC-1

Conjugate Gradient Newton’s Method
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CG vs Newton: MPC-2

Conjugate Gradient Newton’s Method
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CG vs Newton: MPC-3

Conjugate Gradient Newton’s Method

Algorithms took slightly different paths to same solution
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Effect of Step-Size
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MPC-1 Cost Function

Cost function is concave in neighborhood of desired solution
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Rate of Convergence

µ = 10−4 µ = 10−3

Algorithm reaches the peak sooner for µ = 10−3 vs µ = 10−4
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Norm of Gradient Vector

µ = 10−4 µ = 10−3

Algorithm convergences in less than 100 iterations for µ = 10−3
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Convergence Trajectory

µ = 10−4 µ = 10−3

Larger step sizes converge faster but risk overshooting the peak
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Summary

A synthetic aperture is a powerful architecture for sounding
stationary channels
This paper derived an analytical expression for the gradient vector
and Hessian matrix of the MLE cost function for AOA estimation
The MLE AOA algorithm assumes a superposition of plane waves
at the receive array. Without this assumption the phase at each
array element must be modeled as range-dependent
The MLE algorithm requires good initial conditions to converge
Measured results using a synthetic aperture show the algorithm
converges in tens of iterations
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