

PHYSICAL LAYER ABSTRACTION FOR PERFORMANCE EVALUATION OF LEO SATELLITE SYSTEM FOR IOT USING TIME-FREQUENCY ALOHA SCHEME

Sylvain Cluzel^{1,2}, Mathieu Dervin³ José Radzik², Sonia Cazalens⁴, Cédric Baudoin³, Daniela Dragomirescu⁵

¹TéSA, ²ISAE-SUPAERO, ³Thales Alenia Space, ⁴CNES, ⁵INSA/LAAS-CNRS

sylvain.cluzel@tesa.prd.fr

1. Introduction

1.1. NB-IoT extension based on a Low Earth Orbit satellite constellation This paper focuses on the use of a LEO satellite constellation to extend NB-loT [1]. Some 3GPP LTE NB-IoT caracteristics:

- Single-tone SC-FDMA (equivalent to FDMA)

3. Intrasystem interferences

3.1. Description of the phenomena and impact of a scrambling

The values of τ_f and Δ_D impact the interference behavior after the coherence summation.

- -1/3 turbocode, and Rate Matching of QPSK symbols
- **Repetition** scheme is used
- Pilot symbols are spread among the transmission

As seen from the satellite, transmissions:

- suffer from **high Doppler drift and rate**;
- are **not synchronized** in the time domain.

FIGURE 1 – System representation.

Channel access is modeled as **Time-Frequency Aloha Scheme**

1.2. Time-Frequency Aloha Scheme

We suppose that the receiver is **synchronized** with a packet of interest (Pol).

- The interference is not gaussian. - Channel is time-varying.

Can we estimate and **PER** BER (Bit Error Rate) (Packet Error Rate) as a function of the collision scenario?

Figure 6 – Coherent summation

Figure 7 – Two colliding transmissions.

In 3GPP standard, a scrambling is performed. One of the Gold code seed is defined by:

 $c_{\text{init}} = n_{\text{RNTI}} \cdot 2^{14} + N_{\text{ID}}^{\text{Ncell}} + n_f \mod 2 \cdot 2^{13} + \lfloor n_s/2 \rfloor \cdot 2^9$

The frame number and first slot number change every repetition:

 $n_f = n_{f,\text{init}} + \lfloor (n_{\text{rep}} - 1) \times 6.4 \rfloor$

 $n_s = 2 \times (n_{f,\text{init}} + 10 \operatorname{frac}((n_{\text{rep}} - 1) \times 6.4)) \mod 5$

Every 6 repetitions, the seed c_{init} is the same.

Table: Gold code parameters for a transmission.													
Repetition number n_{rep}	1	2	3	4	5	6	7	8					
Frame number n_f	0	6	12	19	25	30	36	42					
$n_f \mod 2$	0	0	0	1	1	0	0	0					
First slot number n_s	0	3	1	4	2	0	3	1					
$\lfloor n_s/2 \rfloor$	0	1	0	2	1	0	1	0					

cnes

S U P A E R O

AAS CNRS

3GPP scrambling doesn't prevent the phenomena as it is, but reduces it.

3.2. Summation methods

We compare different summation methods in order to use the repetitions in a time-varying channel,

Max Ratio Combining, MRC The average power of repetition m is $P_m = P_{PoI} + P_{\text{interf, m}} + N_0.$ The summation coefficient are defined as:

2. BER Estimation

(a) Representation of a whole packet and an interferer.

(b) Representation of a noiseless eye diagram of two transmissions. Dotted lines are the optimal sampling times.

FIGURE 3 – Representation of a packet of interest (plain orange) and an interferer (dashed blue).

The k-th symbol of the received signal r: $r(k) = A_{\text{PoI}} e_{\text{PoI}}(k) + \alpha_{\tau_{\text{f}}}(k) e_{\text{interf}}(k) + n.$

 Γ_{BER} is a function that links SNR and BER

Two different models:

Best case scenario: $\delta_t = 0.5$ Optimal sampling times are separated: Interference is equivalent to AWGN

 $P_{\rm PoI}/N_0$

Unweighted summation

$$\rho_m^{(\text{Unw})} = \frac{P_{\text{PoI}}}{N_0}$$

- **O.U** (Oracle Unweighted) uses a perfectly estimated power.
- **R.U** (Realistic Unweighted) is based on the pilot symbols power.

We solve the following optimization problem:

$$\rho_{\text{opti}} = \underset{\rho}{\operatorname{argmin}} P_{\text{tot}}(\rho) - P_{\text{PoI, sum}}(\rho)$$

Table: Decoding performance of summation methods without using scrambling.

Simula	ation	parameters	Performance (PER)			
$N_{\rm interf}$	$N_{\rm rep}$	P_{T_X}	R.U	O.U	MRC	Optim.
1	4	23 dBm	0.01	0.01	0.13	0.01
1	4	15 dBm	0.86	0.86	0.93	0.86
1	8	15 dBm	0.62	0.57	0.70	0.60

4. PER estimation

System simulations rely on physical layer abstractions. The only existing abstraction method of the PER is [2]: $SNR_{eq}^{RSB-based} = = \frac{N_{\text{interf}}}{N_0 + \sum_{i=1}^{N_{\text{interf}}} \left| (1 - \tau_{\text{f}}^{(i)}) (1 - \tau_{\text{t}}^{(i)}) \right| P_{\text{interf}}^{(i)}}$

Our proposed abstraction method relies is inspired from Mutual Information Effective SNR Mapping (MIESM):

$$\text{SNR}^{\text{MIESM-based}} = \beta_1 I^{-1} \left(\sum_{n=1}^{P} t_n I \left(\frac{\text{SINR}_p}{\sum_{n=1}^{P} t_n} \right) \right)$$

- Both abstractions perform well when the

 $\left(\sum_{p=1}^{l} {}^{l}p^{T}\right)$ eq ρ_{1} β_2)

I is the mutual information ; β_1 , β_2 are calibration factors ; BER = $\Gamma_{\text{PER}}(\text{SNR})$, and Γ_{PER} is obtained *via* simulations.

- number of collisions is low.
- The proposed abstraction shows better performance when the number of repetitions is low.

5. Conclusion and key references

Random schemes such as **TFA** scheme are said to be a challenge for next generation systems, but are not well studied when the number of collisions is low. This paper proposes a **BER estimation** and a novel **PER** abstraction under this assumption. Then, the impact of collisions is discussed when using repetitions; a **decoding method** that minimizes the PER by taking into account these repetitions is proposed.

[1] S. CLUZEL et al. "3GPP NB-IoT coverage extension using LEO satellites". In : IEEE 86th Vehicular Technology Conf. (VTC Spring). 2018, p. 1–5. [2] Z. LI et al. "2D time-frequency interference modelling using stochastic geometry for performance evaluation in Low-Power Wide-Area Networks". In 2017 IEEE Int. Conf. on Comm. (ICC). 2017, p. 1-7.