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Wisdom of the crowd

Ensemble learning and existing algorithms

@ Multidimensional representaiton of data

Basics of tensor decompositions
@ Tensor Ensemble Learning (TEL)

Simulations and results
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Ensemble learning: The wisdom of the crowd

“I'LL ASK THE AUDIENCE" £'CAN | PHONE A FRIEND?"
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Ensemble learning: Motivation and limitations
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@ Every model has its own weaknesses 3+ Combining different models can
find a better hypothesis

o Every model explores its own hypothesis space 3 Robust to outliers
@ Strong assumption that our individual errors are uncorrelated
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Ensemble learning: Existing approaches

Bagging

Model

Support Support Support Support
Vector Machine ~ Vector Machine  Vector Machine  Vector Machine

Machine Learning
Algorithms

London Tensor Ense



Ensemble learning: Existing approaches
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Tensors and basic sub-structures
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Multidimensional data and tensor construction
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Tucker decomposition & HOSVD

(K><R3)
. . BT
(IxJxK) (IxR) (RXRXR) (RxJ)

@ Eeach vector of A is associated with every vector of B and C through the
R4 Ro R3

core tensor G & X ~ Z E Z G, ryrs " 8r by 0Cpy

r1=1ro=1rz=1
@ In general, the Tucker decomposition is not unique
@ But the subspaces spanned by vectors of A, B, C are unique

@ By imposing orthogonality constrains on each factor matrix, we arrive at the
natural generalisation of the matrix SVD, the higher-order SVD (HOSVD)
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Computation of the HOSVD

(K xRy
. . BT

(IxJxK) (IxR) (RXRXR)  (RxJ)

@ Compute the factor matrices first:
X1y = AX) (V)T
X(z) = B (V)" (1)
X3 = CX3) (V)T
© Compute the core tensor
G=Xx; AT x; BT x3C" )]
Where G = X x; AT & G(;) = ATX |y
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Tensor ensemble learning (TEL): General concept

@ Apply tensor decomposition to
each multidimensional sample to
extract hidden information

@ Perform reorganisation of the
obtained latent components

@ Use them to train an ensemble of
base learners

@ For new sample, aggregate the
knowledge about extracted latent
components based on trained
models in stage 3

e London
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D {(Xm1ym)}1 X™ € RIXVXK form =1, M

v

Tensor factorisation of each sample from D
X™ = [G™;A™,B™,C"], m=1,...,M

{ Training data ]

Stage: 1
A" = [a{"~~aﬁa};Bm: [b}"~-~b'£b}; G [c’l"w-cgc];

Regrouping of the factor vectors into separate datasets

pt{@rym}i DR {eR, v} m=1. M
Stagei2 D‘B:{( T’ym)}?'“ ?Dghi{(b}%‘hyy"”)}, m = 1o
D]C:{(ci",y'”)};“';chici{(cnwcwym)}, m=1,...,M

Total number of classifiers

N = Ra + Ry + R

Train
Classifier
Cu(Df)

Train
classifier

Cn(DS,)

Stage: 3

For the X"** = [G"**; A™** B"*¥ C"*“] assign label y"**

Stage: 4 5. ) 2ew
— based on majority vote of {Cl (ar“"),...,Cn(cE: )}
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TEL: Formation of training set
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TEL: Formation of training set
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TEL: Formation of training set
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TEL: Formation of training set
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TEL: Formation of training set
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TEL: Formation of training set
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TEL: Training stage

ML algorithm:
SVM, NN,
KNN

Base learner 1
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TEL: Training stage
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TEL: Training stage

ML algorithm:
SVM, NN,
KNN
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TEL: Testing stage
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TEL: Testing stage
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TEL: Testing stage
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TEL: Testing stage
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ETH-80 dataset

o 8 different categories

@ 10 objects per category

@ Each object is captured under 41 different viewpoints
o Total: 3280 sarnples
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Performance of base estimators

Performance of Base Learners of the TELVI classifier
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Factor vectors used by the base estimator

We employed HOSVD with multilinear rank (5, 5, 2)

Utilised 12 base estimators (train/test split 50%)
@ None of the base classifiers exhibited strong performance on the training set

o Combinational behaviour is similar to classic ensemble learning
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Comparison of the overall test performance

o Base estimator: TREE o Base estimator: KNN o Base estimator: SVM-RBF o Base estimator: SVM-POLY
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@ Random split into training and test data varied in range from 10% 70%
o Hyperparameter tuning: grid search with the 5-fold CV of the training data
@ For fair comparison, the Bagging classifier also utilised 12 base learners
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Conclusions: Key points to take home

@ TEL is a novel framework for generating ensembles of base estimators for
multidimensional data

© TEL highly parallelisable and suitable for large-scale problems

@ Enhanced performance is due to ability to obtain uncorrelated surrogate
datasets that are generated by HOSVD
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Conclusions: Key points to take home

@ TEL is a novel framework for generating ensembles of base estimators for
multidimensional data

© TEL highly parallelisable and suitable for large-scale problems

@ Enhanced performance is due to ability to obtain uncorrelated surrogate
datasets that are generated by HOSVD

New Software: Higher Order Tensors ToolBOX (HOTTBOX)

O Our python package for multilinear algebra:
github.com/hottbox/hottbox

A
Documentation: hottbox.github.io

ﬁ Tutorials: github.com/hottbox/hottbox-tutorials
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The End

Thank you for your attention 5
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