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Ensemble learning: The wisdom of the crowd
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Ensemble learning: Motivation and limitations

Every model has its own weaknesses # Combining different models can
find a better hypothesis
Every model explores its own hypothesis space # Robust to outliers
Strong assumption that our individual errors are uncorrelated

Ilia Kisil, Imperial College London Tensor Ensemble Learning November 28, 2018 4 / 15



Ensemble learning: Existing approaches

Bagging

Stacking

Boosting
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Tensors and basic sub-structures
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Multidimensional data and tensor construction
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Tucker decomposition # HOSVD

Eeach vector of A is associated with every vector of B and C through the

core tensor G # X ≈
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

Gr1r2r3
· ar1 ◦ br2 ◦ cr3

In general, the Tucker decomposition is not unique
But the subspaces spanned by vectors of A,B,C are unique
By imposing orthogonality constrains on each factor matrix, we arrive at the
natural generalisation of the matrix SVD, the higher-order SVD (HOSVD)
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Computation of the HOSVD

1 Compute the factor matrices first:

X(1) = AΣ(1)(V
(1))T

X(2) = BΣ(2)(V
(2))T

X(3) = CΣ(3)(V
(3))T

(1)

2 Compute the core tensor

G = X×1 AT ×2 BT ×3 CT (2)

Where G = X×1 AT ⇔ G(1) = ATX(1)
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Tensor ensemble learning (TEL): General concept

1 Apply tensor decomposition to
each multidimensional sample to
extract hidden information

2 Perform reorganisation of the
obtained latent components

3 Use them to train an ensemble of
base learners

4 For new sample, aggregate the
knowledge about extracted latent
components based on trained
models in stage 3
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TEL: Formation of training set
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TEL: Training stage
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TEL: Testing stage
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ETH-80 dataset

8 different categories
10 objects per category
Each object is captured under 41 different viewpoints
Total: 3280 samples
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Performance of base estimators
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Majority Vote A B C

We employed HOSVD with multilinear rank (5, 5, 2)

Utilised 12 base estimators (train/test split 50%)

None of the base classifiers exhibited strong performance on the training set

Combinational behaviour is similar to classic ensemble learning
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Comparison of the overall test performance
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Random split into training and test data varied in range from 10% 70%

Hyperparameter tuning: grid search with the 5-fold CV of the training data

For fair comparison, the Bagging classifier also utilised 12 base learners
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Conclusions: Key points to take home

1 TEL is a novel framework for generating ensembles of base estimators for
multidimensional data

2 TEL highly parallelisable and suitable for large-scale problems

3 Enhanced performance is due to ability to obtain uncorrelated surrogate
datasets that are generated by HOSVD

New Software: Higher Order Tensors ToolBOX (HOTTBOX)

m



�

Our python package for multilinear algebra:
github.com/hottbox/hottbox

Documentation: hottbox.github.io

Tutorials: github.com/hottbox/hottbox-tutorials
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The End

Thank you for your attentionU

Questions?
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