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Problem and Motivation 
• A fast image retrieval system is needed for quickly 

searching over a large gallery of faces based solely on 
a soft-biometric query (i.e., facial attributes).

• Such a system would drastically down select the 
number of suspects for line-up or post processing 
applications.

• The solution is a multimodal system, with one 
modality being face and the other being the 
soft-biometric attributes.

• Issues and design goals:
• How to map the soft biometrics of subjects 

and their corresponding facial photo from the 
original space into a common latent 
subspace?

• The semantic information across the two 
modalities in the original space needs to be 
preserved in the latent subspace for fast 
cross-modal retrieval. Input

Search String
Output
Virtual Line-Up
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Introduction

• Facial Attributes
• Invariant and semantic visual properties (i.e., visual 

properties  that  have  names).
• The content of a face image can be described by its facial 

attributes such as “a bald old man wearing glasses”.
• Have been used in a variety of computer vision applications 

such as face search engine and face image retrieval.
• Have been significantly exploited by the biometric society  

to  improve  performance  of  object recognition,  face  
verification  and  image  search.

•  Hashing
• A fast and an advantageous solution for an approximate 

binary nearest neighbors (ANN) in image retrieval.
• Transform high-dimensional media data into 

similarity-preserving binary codes for efficient image 
search. 

https://brightside.me/inspiration-psychology/14-facial-features-and-personality-traits-that-everybody-loves-377660/

https://brightside.me/inspiration-psychology/14-facial-features-and-personality-traits-that-everybody-loves-377660/


Introduction

• Cross Modal Hashing
• Cross modal hashing returns relevant results for one 

modality in response to a query in another modality.
• Binary hash  codes  in  the  same  latent hamming 

space are generated for each individual modality.
• Mostly  commonly applied  in text-based image 

retrieval (TBIR) and image-based text retrieval 
(IBTR).

• Deep Cross Modal Hashing
• Application of deep learning techniques for cross 

modal hashing.
• End-to-end learning of binary codes in a common 

latent space for both modalities.
• Improved cross modal retrieval performance when 

compared to hand crafted feature models.
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● D. A. Vaquero, R. S. Feris, D. Tran, L. Brown, A. 
Hampapur, and M. Turk,  “Attribute-based people 
search in surveillance environments,” WACV,  Dec 
2009.
○ Uses face detection and tracking to search for people 

in surveillance systems based on a parsing of human 
parts and their attributes, including facial hair, 
eye-glasses, clothing color, etc.

● B. Siddiquie, R. S. Feris, and L. S. Davis, “Image 
ranking and retrieval based on multi-attribute 
queries,” CVPR, June 2011.

○ Uses the concept of reverse learning and 
hand-crafted features for image retrieval/ranking.

● Q.-Y. Jiang and W.-J. Li, “Deep cross-modal    
hashing,” CVPR, June 2017.
○ Uses deep cross modal hashing for image retrieval 

using text query.

   

Related Work
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Error-Corrected Deep Cross-Modal Hashing (CMH-ECC) 
• Error-corrected deep cross modal 

hashing  (CMH-ECC)
• Utilize  deep cross  modal  hashing and 

error-correcting codes  for  face  image  
retrieval  in  response  to an  attribute  
query.

• Has not been done previously.
• Scalable  cross-modal  hash

• Requires  neither pairs nor triplets of 
training inputs.

• CMH-ECC performs facial image retrieval  
using  point-wise  data.

• This characteristic makes it scalable to large 
scale datasets

• Contains two modules
• Cross-modal hashing module
• Error-Correcting code module



Error-Corrected Deep Cross-Modal Hashing (CMH-ECC) 

     Cross-Modal Hashing Module

• The proposed architecture integrates two Deep NNs 
– one for the soft-biometric modality and the other 
one for the face modality, which are coupled 
together through their common hash-codes. 

• The two DNNs are simultaneously trained on a 
database of cross-modal pairs and are coupled 
together by forcing their binary hash-codes to be 
close to preserve the cross-modal similarities of 
each pair.

• The system performs better when using 
distance-based logistic loss, which has not been 
used previously for cross-modal hashing. 

• Intermediate hash codes are generated using the 
CMH module.

CMH module Cost Function (Three Objectives: Entropy Maximization, Minimizing 
Quantization Error, Distance-based Logistic Loss)



Error-Corrected Deep Cross-Modal Hashing (CMH-ECC) 
     Cross-Modal Hashing Module

• Convolutional Neural Network (CNN)
• Used to extract features for image modality.
• Initialized with VGG 19 network with same filter size, convolutional layers and pooling layers.
• Number of nodes in the last layer is equal to required hash code length
• Fine-tuned using CASIA-WebFace

• Multilayer Perceptron (MLP)
• Used to extract features for attribute modality.
• Contains only 3 fully connected layers with 4096 nodes in the first two nodes and the number of nodes in the last layer is equal to 

the hash code length.
• Activation function for first 2 layers is rectified linear unit (ReLU) and the activation for last layer is an identity function.
• Input to the MLP is a bit map indicating the presence or absence of corresponding facial attribute. 

• Optimization for training the CMH



Error-Corrected Deep Cross-Modal Hashing (CMH-ECC) 
    Error-Correcting Code Module

• The intermediate hash code generated by the CMH 
module is a binary vector that is within a certain 
distance from a codeword of an error-correcting 
code (ECC).

• The intermediate hash code is passed through an 
appropriate ECC decoder, the closest codeword is 
found and this closest codeword is used as a final 
hash code for the retrieval process.

• Benefits of ECC
• The attribute hash and image hash of the 

same subject are (usually) mapped to the 
same codeword, thereby reducing the 
distance of the corresponding hash codes.

• Brings more relevant facial images from the 
gallery closer to the attribute query, which 
leads to improved retrieval performance.  
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Implementation and Datasets

• Implementation Details
• Alternative minimization used to train the parameters.
• Used Adam optimizer with default hyper-parameter values.
• Batch Size used is 128.
• Implemented in Tensorflow with Python API.
• Implemented using two NVIDIA GeForce GTX TITAN X 12GB 

GPUs.
• Used Reed-Solomon codes in the ECC module with code rate=0.5

• Datasets
• First dataset used was Labeled Faces in the Wild (LFW).
• LFW contains more than 13,000 images of faces collected from the internet for 

face recognition
as well as attribute classification . 

• Second dataset used was Face Tracer dataset.
• FaceTracer conatins  15000 real-world face images, collected 

from the internet.
• Both LFW and FaceTracer are annotated with attribute specifications.
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Results
• Evaluation Metric 

• We use normalized discounted cumulative gain (NDCG) to compare ECC-CMH performance with other methods.
• NDCG  is  a  standard  single-number  measure  of ranking quality that allows non-binary relevance judgments.
• NDCG is given as : 

where rel(i)  is the relevance of the ith ranked image and Z is a normalization constant to ensure that the correct ranking results 
in an NDCG score of 1.

• Compared our retrieval and ranking results with  some  of  the  other  state-of-the-art  ranking  approaches including Multi 
Attribute Retrieval & Ranking (MARR), rankBoost,  Direct  Optimization  of  Ranking  Measures (DORM), TagProp.

• Qualitative Results



Results
Ranking performance on the LFW dataset using normalized discounted cumulative gain (NDCG)   



Results
Ranking performance on the Face Tracer dataset using NDCG 
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Conclusion

• This proposed work exploits the relationship between soft and hard biometric 
modalities for fast retrieval from a large scale multi-modal biometric database.

• An algorithm combining deep hashing and error-correcting codes has been 
presented with application in cross-modal retrieval.
○ Using only deep hashing for face image retrieval gives improved ranking performance when 

compared to state-of-the-art methods.
○ The performance is further improved by using error-correcting codes in combination with deep 

hashing.
• The use of error-correcting codes for improving the performance of cross-modal 

retrieval is novel. 
• The experimental results on two popular public datasets shows that our method 

outperforms the current face image retrieval approaches in the literature
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