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Problem and Motivation

« A fast image retrieval system is needed for quickly Bald e —
searching over a large gallery of faces based solely on Young Sﬁ
a soft-biometric query (i.c., facial attributes). Male -
« Such a system would drastically down select the g =
number of suspects for line-up or post processing ;E‘il‘?ﬁalr
applications. Big nose
 The solution is a multimodal system, with one
modality being face and the other being the Blond hair
soft-biometric attributes. Big lips
Female
e Issues and design goals: Straight hair
«  How to map the soft biometrics of subjects ]:tl;;l;}}l‘ta;;r
and their corresponding facial photo from the Femgle
original space into a common latent Young
subspace?
*  The semantic information across the two
modalities in the original space needs to be
preserved in the latent subspace for fast
cross-modal retrieval. Input O.UtpUt _
Search String Virtual Line-Up
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Introduction

e Facial Attributes

e Has

Invariant and semantic visual properties (i.e., visual
properties that have names).

The content of a face image can be described by its facial
attributes such as “a bald old man wearing glasses”.

Have been used in a variety of computer vision applications
such as face search engine and face image retrieval.

Have been significantly exploited by the biometric society
to improve performance of object recognition, face
verification and image search.
hing

A fast and an advantageous solution for an approximate
binary nearest neighbors (ANN) in image retrieval.
Transform  high-dimensional media data into
similarity-preserving binary codes for efficient image
search.

SLIM,
SMALL NOSE

\

W,

STRAIGHT,
MIDDLE-LENGTH NOSE

HEART-SHAPED FACE

https://brightside.me/inspiration-psychology/14-facial-features-and-personality-traits-that-evervbodv-loves-377660/
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Introduction

Cross Modal Hashing

Cross modal hashing returns relevant results for one
modality in response to a query in another modality.
Binary hash codes in the same latent hamming
space are generated for each individual modality.
Mostly commonly applied in text-based image
retrieval (TBIR) and image-based text retrieval
(IBTR).

Deep Cross Modal Hashing

Application of deep learning techniques for cross
modal hashing.

End-to-end learning of binary codes in a common
latent space for both modalities.

Improved cross modal retrieval performance when
compared to hand crafted feature models.

Gallery

Query

A Bald Man wearing Sunglasses (Q1)

Latent Hamming Spac




Outline

Related Work




Related Work

D. A. Vaquero, R. S. Feris, D. Tran, L. Brown, A.
Hampapur, and M. Turk, “Attribute-based people
search in surveillance environments,” WACV, Dec
2009.

o Uses face detection and tracking to search for people
in surveillance systems based on a parsing of human
parts and their attributes, including facial hair,
eye-glasses, clothing color, etc.

e B. Siddiquie, R. S. Feris, and L. S. Davis, “Image

)

ranking and retrieval based on multi-attribute
queries,” CVPR, June 2011.
o Uses the concept of reverse learning and
hand-crafted features for image retrieval/ranking.
Q.-Y. Jiang and W.-J. L1, “Deep cross-modal
hashing,” CVPR, June 2017.
o Uses deep cross modal hashing for image retrieval
using text query.

WestVirginiaUniversity.
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Error-Corrected Deep Cross-Modal Hashing (CMH-ECC)

Error-corrected deep cross modal
hashlng (CMH-ECC)

Utilize deep cross modal hashing and
error-correcting codes for face image
retrieval in response to an attribute
query.

*  Has not been done previously.

Scalable cross-modal hash

* Requires neither pairs nor triplets of
training inputs.

+ CMH-ECC performs facial image retrieval
using point-wise data.

*  This characteristic makes it scalable to large
scale datasets

Contains two modules

¢ Cross-modal hashing module
*  Error-Correcting code module

i CMH Module
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Error-Corrected Deep Cross-Modal Hashing (CMH-ECC)

Cross-Modal Hashing Module

The proposed architecture integrates two Deep NNs
— one for the soft-biometric modality and the other

one for the face modality, which are coupled
together through their common hash-codes.

The two DNNs are simultaneously trained on a
database of cross-modal pairs and are coupled
together by forcing their binary hash-codes to be

close to preserve the cross-modal similarities of

each pair.

The system performs Dbetter when

distance-based logistic loss, which has not been
used previously for cross-modal hashing.
Intermediate hash codes are generated using the
CMH module.

CMH module Cost Function (Three Objectives: Entropy Maximization, Minimizing
Quantization Error, Distance-based Logistic Loss)

using
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Error-Corrected Deep Cross-Modal Hashing (CMH-ECC)
Cross-Modal Hashing Module

e Convolutional Neural Network (CNN)
*  Used to extract features for image modality.
* Initialized with VGG 19 network with same filter size, convolutional layers and pooling layers.
*  Number of nodes in the last layer is equal to required hash code length
*  Fine-tuned using CASIA-WebFace
*  Multilayer Perceptron (MLP)
*  Used to extract features for attribute modality.
*  Contains only 3 fully connected layers with 4096 nodes in the first two nodes and the number of nodes in the last layer is equal to
the hash code length.
* Activation function for first 2 layers is rectified linear unit (ReLLU) and the activation for last layer is an identity function.
* Input to the MLP is a bit map indicating the presence or absence of corresponding facial attribute.

. Optimization for training the CMH

min ZZ{ p(F*nG*J) Sij) +o(|[F— Cx||F+||G C>||F)+I3(||F1||F+||G1||F)

C_\'._\* yWx , Wy

—1.j—1
distance- ba@ed logistic loss quantlzatlon loss entropy max1mlzat10n

S.t. Cx’y 6 {+1, _I}CXI’L
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Error-Corrected Deep Cross-Modal Hashing (CMH-ECC)

Error-Correcting Code Module | s

Face

*  The intermediate hash code generated by the CMH
module is a binary vector that is within a certain
distance from a codeword of an error-correcting
code (ECC).

* The intermediate hash code is passed through an
appropriate ECC decoder, the closest codeword is
found and this closest codeword is used as a final
hash code for the retrieval process.

*  Benefits of ECC

*  The attribute hash and image hash of the
same subject are (usually) mapped to the
same codeword, thereby reducing the

Image Hash Codes
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At Ca

. . TTECCModule T
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] . . Image Hash Codes (c{¥)) E premm———— [ Image Hash Codes
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Implementation Details

Datasets

Implementation and Datasets

Alternative minimization used to train the parameters.

Used Adam optimizer with default hyper-parameter values.

Batch Size used is 128.

Implemented in Tensorflow with Python APIL

Implemented using two NVIDIA GeForce GTX TITAN X 12GB
GPUs.
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Results

Evaluation Metric

We use normalized discounted cumulative gain (NDCG) to compare ECC-CMH performance with other methods.
NDCG is a standard single-number measure of ranking quality that allows non-binary relevance judgments.
NDCGisgivenas: | ;.  orel(i)
Z z'i=1 log(i+1)

where rel(i) is the relevance of the ith ranked image and Z is a normalization constant to ensure that the correct ranking results
in an NDCG score of 1.

Compared our retrieval and ranking results with some of the other state-of-the-art ranking approaches including Multi

Attribute Retrieval & Ranking (MARR), rankBoost, Direct Optimization of Ranking Measures (DORM), TagProp.

Qualitative Results
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Results

Ranking performance on the LFW dataset using normalized discounted cumulative gain (NDCG)
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Results
Ranking performance on the Face Tracer dataset using NDCG
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Conclusion

This proposed work exploits the relationship between soft and hard biometric
modalities for fast retrieval from a large scale multi-modal biometric database.
An algorithm combining deep hashing and error-correcting codes has been

presented with application in cross-modal retrieval.
o Using only deep hashing for face image retrieval gives improved ranking performance when
compared to state-of-the-art methods.
o  The performance is further improved by using error-correcting codes in combination with deep
hashing.
The use of error-correcting codes for improving the performance of cross-modal
retrieval is novel.
The experimental results on two popular public datasets shows that our method

outperforms the current face image retrieval approaches in the literature

WestVirginiaUniversity.
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