

60-GHz Millimeter-Wave Pathloss Measurements in Boise Airport

Mahfuza Khatun⁺, Hani Mehrpouyan⁺, David Matolak[‡]

⁺Department of ECE, Boise State University [‡]Department of Electrical Engineering, University of South Carolina email: mahfuzakhatun@u.boisestate.edu, hani.mehr@ieee.org, matolak@cec.sc.edu

Contents

GHz channel measurement campaigns

Hardware setup

- Specifications
- Measurements procedure and environment
 - Boise Airport
 - Boise State University
 - LOS scenarios
 - NLOS scenarios

- Large-scale path loss models at 60 GHz
 Close-in reference path loss model (CIM)
 - □ Floating-intercept path loss model (FIM)
 - Least square regression fit
 - Gradient descent regression fit

Path loss parameters

- Path loss exponent and
- Shadowing factor
- Scatter plot of the empirical data
- Conclusion and Future work

Hardware Setup for Channel Measurement (Tx Side)

Hardware Setup for Channel Measurement (Rx Side)

Hardware Specifications

Table I: CHANNEL MEASUREMENTS HARDWARE SPECIFICATION AT 60 GHZ CAMPAIGN

60 GHz campaign				
Carrier frequency	60 GHz			
Modulation scheme	BPSK			
Bandwidth	1.3 GHz			
Tx and Rx antenna gain	25 dB			
Tx and Rx antenna 3dB beamwidth in E-plane	7.92°			
Tx and Rx antenna 3dB beamwidth in H-plane	9.65°			
Max. Tx power	-5 dBm			

Measurement Environment

- The measurement campaigns were conducted at Boise Airport & Boise State University
 - Airport gate areas
 - Airport baggage claim areas
 - Hallway of Engineering building
 - Outdoor of the Engineering building

Fig. 2: 60 GHz channel measurement conducted in airport gate (left) and hallway (right)

Large-scale Fading Model

Close-in reference path loss model

 $PL(d) = PL(d_o) + 10 n \log_{10} \left(\frac{u}{d_o}\right) + \chi_{\sigma}$

 $PL(d_o)$ = free space path loss at 60 GHz n = path loss exponent, how fast the path loss increases with the separation χ_{σ} = log-normal random variable with 0 mean and standard variation σ

Floating- Intercept path loss model

 $PL(d) = \alpha + 10\beta \log_{10} (d) + \chi_{\sigma}$

- $\alpha =$ floating intercept in dB
- β = linear slope

 χ_{σ} = log-normal random variable with 0 mean and standard variation σ

Two Approaches

- Gradient- descent fit (GDM)
- Least-square fit (FIM)

Path Loss Results

- The blue triangle represents the LOS measurement data
- The path loss exponent and shadow factor are determined using three models: CIM, FIM and GDM

Fig. 3: FIM, GDM and CIM along with the measurement data taken from the airport baggage (left) and gate (right) area at 60 GHz

Result and Analysis

- Measurement campaign at 60 GHz at Boise State University
- Two Indoor measurements

One outdoor campaign measurement

Fig. 3: FIM, GDM and CIM along with the measurement data taken from the indoor of LOS link (left), outdoor of LOS link (middle) and indoor NLOS link (right) at 60 GHz

Result and Analysis

Table I : PARAMETERS OF THE CLOSE-IN REFERENCE MODEL (CIM), FLOATING INTERCEPT MODEL (FIM) AND GRADIENT DESCENT FIT MODEL (GDM) FOR AIRPORT AND UNIVERSITY ENVIRONMENTS

Directional Path Loss Models											
Environments	Scenarios	CIM		FIM			GDM				
		n	σ , dB	α, dB	β	σ,dB	α	β	σ,dB		
Airport gate area	LOS	1.38	3.6	56	2.13	2.30	56	1.7	2.8		
Airport baggage area	LOS	1.12	2.27	57	1.70	1.38	56.78	1.63	1.4		
indoor	LOS	1.05	2.75	53	1.43	2.24	53.78	1.11	2.54		
outdoor	LOS	1.31	3.7	51.5	2.35	1.34	51.37	2.08	1.63		
indoor	NLOS	1.15	3.58	59.08 6	2.03	3.04	60.25	2.29	3.11		

Recent Work (Path Loss Values at 60 GHz)

Fig. 4: Plots of the path loss values from recent work

G Similarities

- Similar results to indoor hallway [1] PL value. These are $\alpha =$ 58.9 β = 1.88
- Our result deviates from the freespace values which similar to indoor [1], outdoor [1] PL values at 60 GHz.

Differences

- □ Far from indoor single [2], and indoor hallway [1] value.
- All results far from free-space values except indoor[2] value.

Conclusion & Future Work

- Gradient-Descent regression fit is used, and comparable results are found with the least-square fit line
- CIM provides more waveguiding effects than the FI model
 - Single parameter model
 - Physical basis model
- Multipath propagation effects can be experimented in the airport environments.
- Wideband MIMO (Multiple-input Multiple-Output) channel measurements

References

[1] A. I. Sulyman, A. Alwarafy, H. E. Seleem, K. Humadi, and A. Alsanie, "Path loss channel models for 5g cellular communications in riyadh city

at 60 ghz," in IEEE Int. Conf on Comm., 2016, pp. 1–6.

[2] C. R. Anderson and T. S. Rappaport, "In-building wideband partition loss measurements at 2.5 and 60 ghz," IEEE Trans. Wireless Commun., vol. 3, no. 3, pp. 922–928, 2004.

[3] S. Rangan, T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," IEEE Proceed., vol. 102, no. 3, pp. 366–385, 2014.

[4] T. S. Rappaport, R. W. Heath Jr, R. C. Daniels, and J. N. Murdock, Millimeter wave wireless communications. Pearson Education, 2014.

[5] X. Wu, C.-X. Wang, J. Sun, J. Huang, R. Feng, Y. Yang, and X. Ge, "60-ghz millimeter-wave channel measurements and modeling for indoor office environments," IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 1912–1924, 2017.

[6] M. Khatun, H. Mehrpouyan, D. Matolak, and I. Guvenc, "Millimeter wave systems for airports and short-range aviation communications: A survey of the current channel models at mmwave frequencies," IEEE Digital Av. Systems Conf., 2017.

[7] P. Nobles and F. Halsall, "Indoor propagation at 17 ghz and 60 ghzmeasurements and modelling," IET National Conf. on Antennas and Propag., 1999.

[8] M. Kyro, K. Haneda, J. Simola, K. Nakai, K.-i. Takizawa, H. Hagiwara, and P. Vainikainen, "Measurement based path loss and delay spread modeling in hospital environments at 60 ghz," IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2423–2427, 2011.

[9] P. Pagani, I. Siaud, N. Malhouroux, and W. Li, "Adaptation of the france telecom 60 ghz channel model to the tg3c framework," IEEE P802, vol. 15, 2006.

[10] C. R. Anderson and T. S. Rappaport, "In-building wideband partition loss measurements at 2.5 and 60 ghz," IEEE Trans. Wireless Commun., vol. 3, no. 3, pp. 922–928, 2004.

[11] M.-W. Jung, J. Kim, and Y.-K. Yoon, "Measurements of path loss in mm-wave for indoor environments," in IEEE Microw. Conf., 2009, pp. 1068–1071.

[12] G. R. MacCartney, M. K. Samimi, and T. S. Rappaport, "Omnidirectional path loss models in new york city at 28 ghz and 73 ghz," in IEEE Int. Symposium. IEEE, 2014, pp. 227–231.

COLLEGE OF ENGINEERING

Thank You