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Introduction

The designs of wireless sensor networks to perform the task of
distributed detection are often based on the conventional
battery-powered sensors, leading into designs with a short lifetime,
due to battery depletion.

Energy harvesting, which can collect energy from renewable resources
of environment (e.g., solar, wind, and geothermal energy) promises a
self-sustainable system with a lifetime.
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System Model

H0  : A is present     !
H1  : A is absent!
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Figure 1: Our System model during one observation period.
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System Model

Let xk denote the local observation at sensor k :

xk =

{
gkA+ wk H1

wk H0

(1)

A is a known scalar signal

wk∼N (0, σ2
wk

)→ Additive noise

gk∼N (0, γgk )→ Multiplicative noise

All observation noises are independent over time and among K
sensors.
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System Model

During each observation period, sensor k takes N samples of xk to
measure the received signal energy and applies an energy detector to make
a binary decision, i.e., sensor k decides whether or not signal A is present.

Λk =
1

N

N∑
n=1

|xk,n|2 ≷
dk=1

dk=0
θk (2)

Pfk = Pr(Λk > θk |H0) =
Γ
(
N/2,

Nθk
σ2
wk

)
Γ(N/2)

Pdk = Pr(Λk > θk |H1) = QN/2

(√ηk
σwk

,
√
Nθk
σwk

)
Our goal is optimize the local decision threshold θk
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System Model

Assumptions:

Each sensor is able to harvest energy from the environment and stores
it in a battery with the capacity K units of energy.

The sensors communicate with the FC through orthogonal fading
channels with channel gains |hk |’s with parameters γhk .

The sensors employ on-off keying signaling.

We use the channel-inversion power, the number of energy units
spent to convey a decision is inversely proportional to |hk |.
To avoid the battery depletion when |hk | is too small, we impose an
extra constraint for channel quality.
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System Model

Let uk,t represent the sensor output corresponding to the observation
period t.

uk,t =

{
d λ
|hk |e Λk > θk , bk,t > d λ

|hk |e, |hk |
2 > ζk

0 Otherwise
(3)

bk,t denote the battery state of sensor k

|hk | is channel gain

ζk is threshold of the channel quality

λ is a power regulation constant
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System Model

We model bk,t in (3) as the following

bk,t = min
{
bk,t−1 − d

λ

|hk |
eIuk,t−1

+ Ωk,t , K
}

(4)

Ωk,t ∈ {0, 1} indicates units of harvesting energy and it is a Bernoulli
random variable, with Pr(Ωk,t =1)=pe

Iuk,t−1
=

{
1 uk,t−1 > 0

0 Otherwise
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Battery Model

Assuming bk in (4) is a stationary random process, one can compute
the CDF and the pmf of bk in terms of K, pe , γhk . Further, we use
pmf of bk for our numerical results.
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Figure 2: (a) CDF of bk for K=20 and pe =0.5, 0.75, 0.82, (b) pmf of bk for K=50 and
pe =0.8.
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Optimizing local decision thresholds

We consider two detection performance metrics to find the optimal θk ’s:

The detection probability at the FC, assuming that the FC utilizes the
optimal fusion rule based on Neyman-Pearson optimality criterion.

the KL distance between the two distributions of the received signals
at the FC conditioned on hypothesis H0,H1
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Optimal LRT Fusion Rule and PD ,PF Expressions

The received signal at the FC from sensor k is yk = hkuk + nk , where the
additive communication channel noise nk ∼ N

(
0, σ2

nk

)
. The likelihood

ratio at the FC is

∆LRT =
K∑

k=1

log

(∑
uk
f (yk |uk ,H1) Pr (uk |H1)∑

uk
f (yk |uk ,H0) Pr (uk |H0)

)
(5)

Given uk , yk is Gaussian, i.e., yk |uk=0 ∼ N
(
0, σ2

nk

)
and

yk |uk=d λ
|hk |
e ∼ N

(
d λ
|hk |ehk , σ

2
nk

)
.
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Optimal LRT Fusion Rule and PD ,PF Expressions

The probabilities Pr(uk |H1), Pr(uk |H0) in (5) are

Pr
(
uk = d λ

|hk |e
∣∣H1

)
= Pdkρkqk = αk

Pr
(
uk = d λ

|hk |e|H0

)
= Pfkρkqk = βk

where ρk =Pr(bk > d λ
|hk |e) and qk =Pr(|hk |2 > ζk).

Given a threshold τ , the optimal likelihood ratio test (LRT) is

∆LRT ≷
H1

H0

τ . The PF ,PD at the FC

PF = Pr (∆LRT > τ |H0) = Q
(τ − µ∆|H0

σ∆|H0

)
(6)

PD = Pr (∆LRT > τ |H1)

= Q

(
Q−1(a)σ∆|H0

+ µ∆|H0
− µ∆|H1

σ∆|H1

)
(7)
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KL Expression

Kullback-Leibler distance (KL) between the two distributions of the
received signals at the FC

KLk =

∫
yk

f (yk |H1) log

(
f (yk |H1)

f (yk |H0)

)
dyk (8)

One can approximate KLk in (8) by the KL distance of two Gaussian
distributions

KLk ≈
1

2
log(

σ2
yk |H0

σ2
yk |H1

) +
σ2
yk |H1

− σ2
yk |H0

+ (µyk |H1
− µyk |H0

)2

2σ2
yk |H0

(9)
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Simulation Results

In this section, we consider:

Scheme I: Numerically find θk ’s which maximize PD in (7) →
K -dimensional search is required → computational complexity!

Scheme II: Finding θk ’s which maximize KLtot =
∑K

k=1 KLk , using
the KLk approximation in (9) → Only one dimensional search →
computationally efficient.

Special cases: Assume all sensors employ the same local threshold
θk =θ and compare schemes I and II.

We then compare PD evaluated at the θk ’s obtained from mentioned
schemes.
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Simulation results
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Figure 3: (a) PD vs. PF

(b) PD vs. Pav
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Conclusion

We studied a distributed detection problem in a wireless network with
K heterogeneous energy harvesting sensors and investigated the
optimal local decision thresholds for given transmission and battery
state models.

Our numerical results indicate that the thresholds obtained from
maximizing the KL distance are near-optimal and computationally
very efficient, as it requires only K one-dimensional searches, as
opposed to a K -dimensional search required to find the thresholds
that maximize the detection probability.

The performance gap between each scheme and its corresponding
special case indicates that when sensors are heterogeneous, it is
advantageous to use different local thresholds according to sensors’
statistics.
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Thank You

Questions?
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