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Context

Lattices are mathematical objects suited to model MIMO systems.
Good solution for lattice decoding ⇒ more efficient MIMO systems.

Lattices can also be used for channel coding, shaping and cryptography.

Neural Networks and Deep Learning are emerging technologies with many
advantages.

Open problem:
Low complexity near-optimal lattice decoding algorithm ?
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The Decoding Problem

z ∈M ⊆ Zn is the input uncoded message.
y = g(z) ∈ Rn is the received message.
g(·): coding and/or channel.

MAP decoding

Find f(·) s.t. f(y) ≈ arg max
z∈M

P (z|y)

Neural Network

Any transformation

AWGN

Mimo channel,

Channel coding,
z x y ẑ

Figure: Discrete-time baseband channel model.

MAP: Maximum A Posteriori
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Deep Learning: what for?

DL for Computer Vision

Minimum error rate for the
classification on a set of
images is unknown.

People have been struggling
just to outperform humans
until the use of convolutional
networks.

Performance is more
important than complexity.

DL for Decoding

Since 1948 the limit for reliable
communication over a noisy
channel is known.

There exist algorithms to get really
close to this limit (LDPC, Polar) and
to optimally decode (Max.
Likelihood).

Complexity is the main goal in
Coding Theory when applying
DNNs.

DL: Deep Learning, DNN: Deep Neural Network
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Lattices

A lattice is a discrete additive subgroup of Rn:

There are n basis vectors, B = {gi}ni=1.

The lattice is given by all their integer linear combinations.
E.g. {x = z ·G, z ∈ Zn}.
Lattices are the real Euclidean counterpart of error-correcting codes.

Codes are vector spaces over a finite field.
Lattices are modules over a real or a complex ring, e.g. Z, Z[i], Z[ω].
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The Closest Vector Problem

The CVP (lattice decoding)

Given a point in Rn find the closest lattice point.

CVP: Closest Vector Problem
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Solving the CVP: Sphere Decoding

Drawbacks

Not hardware-friendly.

Complexity highly variable.

Complexity not well understood.

Can not be parallelized:
high latency.

Can not take advantage of
possible approximations.

CVP: Closest Vector Problem
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Neural Lattice Decoding (1)

Neural Network

Neuron

AWGN

sigmoid

Output layerInput layer Hidden layer

Lattice encoding:

MLD

w1

w2

wn

z ẑ

θ

Σ

x = z ·G
x y ||zMLD − ẑ||2

y1

y2

yn

∂||zMLD−ẑ||2
∂W

MLD: Maximum Likelihood Decoding
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Neural Lattice Decoding (2)

Theorem (Anthony & Bartlett 1999)

The two-layer sigmoid networks are “universal approximators", in a sense that,
given any continuous function f defined on some compact subset S of Rn, and
any desired accuracy ε, there is a two-layer sigmoid network computing a function
that is within ε of f at each point of S.

The fundamental parallelotope P(B) is a compact set that can be used for
neural lattice decoding.
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Voronoi-Reduced Basis (1)

(New) Definition (Voronoi-Reduced Basis)

Let B be the Z-basis of a rank-n lattice Λ in Rn. B is said Voronoi-reduced if, for
any point y ∈ P(B), the closest lattice point x̂ to y is one of the 2n corners of
P(B), i.e. x̂ = ẑG where ẑ ∈ {0, 1}n.
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A VR-basis induces:

Binary outputs network.

Less Voronoi-Partitions within the fundamental parallelotope:
The function to learn is simpler.

VR: Voronoi-Reduced

12 / 19



© Mitsubishi Electric R&D Centre Europe
Non Confidential / Export Control: NLRMitsubishi Electric R&D Centre Europe

Voronoi-Reduced Basis (1)

(New) Definition (Voronoi-Reduced Basis)

Let B be the Z-basis of a rank-n lattice Λ in Rn. B is said Voronoi-reduced if, for
any point y ∈ P(B), the closest lattice point x̂ to y is one of the 2n corners of
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Voronoi-Reduced Basis (2)
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Voronoi-Reduced Basis (3)
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Learning is easier with a good basis
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Figure: Feed-forward neural network applied to the lattice A2, with a good and a bad basis.

MLD: Maximum Likelihood Decoding
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The HLD: a hand-made NLD
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A Boolean equation to decode

x = z ·G+ η, x ∈ P(B)

ẑ = (ẑ1, ẑ2)

ẑ1 = c+ b · e

Heav(l3)Heav(l1)

11

Heav(l2)

1

-1

1
2

ẑ1

y1

y2

− 1
2

−
√

3
2

− 3
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Figure: Neural network computing the Boolean equation.

The HLD is MLD when used on a lattice with a Voronoi-reduced basis.
HLD: Hyperplane Logical Decoder, NLD: Neural Lattice Decoder, Heav: Heaviside function
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Learning to decode (1)

Settings

Standard fully-connected network
with 3 hidden layers
(No constraint on the
architectures).

Dense lattice E8 &
MIMO Lattice T55 (n = 16).

Size of first hidden layer
≈ kissing number:
τ(E8) = 240, τ(T55) = 30.

Nb params: W=83200 for E8,
W=6280 for T55*.
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For E8:
log2(W )

n
= 2.0 (supra-lin.), for T55: log2(W )

n
= 0.78 (sub-lin.).

Competitive decoding algorithm only for non-dense lattices.
* For T55 it is possible to reach MLD performance with a slight increase in the number of parameters W .
MLD: Maximum Likelihood Decoding, lin.: linear
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Learning to decode (2)

Settings

HLD network with L1 regularization.

Dense lattice D4 .

HLD equation for D4:
z1 = u1 + u2 · u3 · u4 · u5 · u6

+ u4 · u7 · u8 + u4 · u7 · u9
+ ·u4 · u10.

The equation has 5 logical OR
(5 neurons in the second hidden layer).

We fix the projections (first layer).

We learn the rest with L1 regu.

The number of neuron in the
second layer decreases from 5 to 2.
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Learning with L1 regularization
enables to factorize equations.
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Conclusion

Machine learning in the heart of Telecommunications systems.

Easy implementation of models in large companies thanks to parallel
computing.

Embed Neural Network inside hardware: analog or digital solutions?
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