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HETe Context

Changes for the Better

@ Lattices are mathematical objects suited to model MIMO systems.
@ Good solution for lattice decoding = more efficient MIMO systems.

@ Lattices can also be used for channel coding, shaping and cryptography.

@ Neural Networks and Deep Learning are emerging technologies with many
advantages.

Open problem:
Low complexity near-optimal lattice decoding algorithm ?
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The Decoding Problem

@ z € M C Z" is the input uncoded message.
@ y = g(z) € R" is the received message.
@ ¢(-): coding and/or channel.

MAP decoding
Find f(-) s.t. f(y) ~ arg max P(z|y)
zeM
AWGN
Mimo channel, A
% | Chandl coding, 4 Yy (-2
Any transformation
Neural Network
MAP: Maximum A Posteriori

Figure: Discrete-time baseband channel model.
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Deep Learning: what for?

DL for Computer Vision i i ez g

@ Minimum error rate for the
classification on a set of
images is unknown.

@ People have been struggling
just to outperform humans
until the use of convolutional
networks.

@ Performance is more

important than complexity.

DL: Deep Learning, DNN: Deep Neural Network
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@ Since 1948 the limit for reliable
communication over a noisy
channel is known.

@ There exist algorithms to get really
close to this limit (LDPC, Polar) and
to optimally decode (Max.
Likelihood).

@ Complexity is the main goal in
Coding Theory when applying
DNNs.
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A lattice is a discrete additive subgroup of R™:
@ There are n basis vectors, B = {g;}}"_;.

@ The lattice is given by all their integer linear combinations.
Eg. {r=2-G, z€ Z"}.
@ Lattices are the real Euclidean counterpart of error-correcting codes.
e Codes are vector spaces over a finite field.
o Lattices are modules over a real or a complex ring, e.g. Z, Z[i], Z|w].
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Lattices

A lattice is a discrete additive subgroup of R™:
@ There are n basis vectors, B = {g;} ;.
@ The lattice is given by all their integer linear combinations.
Eg. {r=2-G, z€ Z"}.
@ Lattices are the real Euclidean counterpart of error-correcting codes.

e Codes are vector spaces over a finite field.
e Lattices are modules over a real or a complex ring, e.g. Z, Z[i], Z[w].

Fundamental regions

@ Voronoi cell.
@ Fundamental parallelotope P(B).
e Good and bad bases.
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The Closest Vector Problem
The CVP (lattice decoding)

Given a point in R™ find the closest lattice point.

® ® ® ® ®
® L ® ® L
oY
L ® ® L L
® L L ® L
CVP: Closest Vector Problem
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Solving the CVP: Sphere Decoding

[ ® ® o o
[ [ ] [ ]
[ [ o
[ [ [ [ ]
Drawbacks
@ Not hardware-friendly. @ Can not be parallelized:
high latency.

@ Complexity highly variable.

) @ Can not take advantage of
@ Complexity not well understood.

possible approximations.

CVP: Closest Vector Problem
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Neural Lattice Decoding (1)

Input layer  Hidden layer Output layer
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MLD: Maximum Likelihood Decoding
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Neural Lattice Decoding (2)

Theorem (Anthony & Bartlett 1999)

The two-layer sigmoid networks are “universal approximators”, in a sense that,
given any continuous function f defined on some compact subset S of R", and
any desired accuracy e, there is a two-layer sigmoid network computing a function
that is within e of f at each point of S.

=} (=) = = £ DA
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Neural Lattice Decoding (2)

Theorem (Anthony & Bartlett 1999)

The two-layer sigmoid networks are “universal approximators”, in a sense that,
given any continuous function f defined on some compact subset S of R", and
any desired accuracy e, there is a two-layer sigmoid network computing a function
that is within e of f at each point of S.

The fundamental parallelotope P(13) is a compact set that can be used for
neural lattice decoding.
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Voronoi-Reduced Basis (1)

(New) Definition (Voronoi-Reduced Basis)

Let B be the Z-basis of a rank-n lattice A in R™. B is said Voronoi-reduced if, for
any point y € P(B), the closest lattice point Z to y is one of the 2™ corners of
P(B),i.e. & = 2G where 2 € {0,1}".

=] F = = £ 9Dae
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Voronoi-Reduced Basis (1)

(New) Definition (Voronoi-Reduced Basis)

Let B be the Z-basis of a rank-n lattice A in R™. B is said Voronoi-reduced if, for
any point y € P(B), the closest lattice point Z to y is one of the 2™ corners of
P(B),i.e. & = 2G where 2 € {0,1}".

A VR-basis induces:
@ Binary outputs network.
@ Less Voronoi-Partitions within the fundamental parallelotope:

The function to learn is simpler.

VR: Voronoi-Reduced [} =) = E £ DA
12/19

Mitsubishi Electric R&D Centre Europe Non Confidential / Export Control: NLR © Mitsubishi Electic R&D Centre Europe



MITSUBISHI

MR Voronoi-Reduced Basis (2)

Changes for the Better

251 ) ) ) 7

05

-0.5 0 0.5 1 1.5 2 25 3 3.5

Mitsubishi Electric R&D Centre Europe Non Confidential / Export Control: NLR . 13/19
© Mitsubishi Electric R&D Centre Europe



MITSUBISHI
ELECTRIC
Changes for the Better

Voronoi-Reduced Basis (3)
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wisuss - Learning is easier with a good basis
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Figure: Feed-forward neural network applied to the lattice A2, with a good and a bad basis.

MLD: Maximum Likelihood Decoding
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The HLD: a hand-made NLD

A Boolean equation to decode

@ rx=z2-G+n,zePB)
o ,‘2’2(21,22)

@ Z1=c+b-e

Heav(lz) Heav(l3)

Figure: Neural network computing the Boolean equation.
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The HLD is MLD when used on a lattice with a Voronoi-reduced basis.
HLD: Hyperplane Logical Decoder, NLD: Neural Lattice Decoder, Heav: Heaviside function
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@ Standard fully-connected network
with 3 hidden layers
(No constraint on the
architectures).

@ Dense lattice Fg &
MIMO Lattice T'55 (n = 16).

@ Size of first hidden layer N

Eg-MLD ——

Learning to decode (1)

| ryp—

~ kissing number: e N

7(Es) = 240, 7(T55) = 30. e
@ Nb params: W=83200 for Fg,

W=6280 for T'55".

=} (=) = = £ DA
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@ Standard fully-connected network
with 3 hidden layers =
(No constraint on the
architectures).

@ Dense lattice Fg &
MIMO Lattice 755 (n = 16).

@ Size of first hidden layer N

Eg-MLD ——

Learning to decode (1)

[y p—

~ kissing number: AR N

7(Eg) = 240, 7(T'55) = 30. e e
@ Nb params: W=83200 for Fg,

W=6280 for T'55*.

v

For Ej: % = 2.0 (supra-lin.), for T'55: mng 0.78 (sub-lin.).
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Mitsubishi Electric R&D Centre Europe Non Confidential / Export Control: NLR ©Mitsubishi Electric R&D Cenre Europe 17 /19



MITSUBISH Learning to decode (1)

ELECTRIC

Changes for the Better

@ Standard fully-connected network
with 3 hidden layers —
(No constraint on the
architectures).

@ Dense lattice Fg &
MIMO Lattice 755 (n = 16).

Point Eror Probabilty

@ Size of first hidden layer . ; —_—
~ kissing number: b == N |
7(Es) = 240, 7(T'55) = 30. e

@ Nb params: W=83200 for Fg,
W=6280 for T'55*.

y

For Ej: % = 2.0 (supra-lin.), for T'55: mng 0.78 (sub-lin.).

Competitive decoding algorithm only for non-dense lattices.

* For T'55 it is possible to reach MLD performance with a slight increase in the number of parameters W.

MLD: Maximum Likelihood Decoding, lin.: linear o -l = = = Q>
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@ HLD network with L1 regularization.
@ Dense lattice Dy .

Learning to decode (2)

@ HLD equation for Dy:
21 = Ul + U2 - U3 - Ug - U - Ug

+ Ug - U7 - U + Ug - UT - Ug

+ “Uyq - UTQ-

i
The equation has 5 logical OR g : ;
(5 neurons in the second hidden layer).

3
Distance to Poltyrev (dB)

@ We fix the projections (first layer).

@ We learn the rest with L1 regu. Learning with L1 regularization

o The number of neuron in the enables to factorize equations.

second layer decreases from 5 to 2.

=) ] = =
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@ Machine learning in the heart of Telecommunications systems.

@ Easy implementation of models in large companies thanks to parallel
computing.

@ Embed Neural Network inside hardware: analog or digital solutions?
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