

A Performance Analysis on the Optimal Number of Measurements for Coded Compressive Imaging

Oğuzhan Fatih Kar, Alper Güngör, Serhat İlbey,

Can Barış Top, H. Emre Güven

ASELSAN Research Center

Ankara, Turkey

1

- Practical coded compressive imaging settings
 - Focal Plane Array (FPA) imaging
 - Gathers noisy undersampled measurements of spatially modulated light intensity from a scene
 - Spatial modulation can be performed at sub-pixel level using a DMD
 - Reconstruction using sparse recovery algorithm
 - Magnetic Particle Imaging (MPI)
 - Allows fast imaging of magnetic nanoparticle (MNP) samples in a FOV
 - System matrix (SM) calibration is done using coded scenes with MNP samples at multiple positions
 - SM reconstruction using compressive sensing
- Investigation of the trade-off between input pSNR, number of measurements, and image quality

Previous Work

- Practical signal transmission in radar/sonar with a fixed power budget (Yang et al., 2017)
 - Measurement matrix with Gaussian iid entries
 - Gaussian, Bernoulli-Gaussian, and least favourite distributions for signal models
 - Sparsity level should be known
 - Based on state evolution technique proposed for approximate message passing algorithm

4

• FPA Imaging

- Constant integration time for measurements
 - Per-frame integration time is divided among different spatial modulations
 - k different modulations -> Input SNR scales by 1/k
- Signal energy per pixel increases with pixel size
- MPI
 - Signal energy decays linearly with number of coded scenes

Real Domain : FPA Imaging

aselsan

Coded and

subsampled

measurement (y_i)

DMD Encoding (Λ_i)

Low-resolution

Sub-Sampling

camera

(D)

- *k* different DMD encodings
- $x \in \mathbb{R}^N$, $y \in \mathbb{R}^{nk}$ (FPA with *n* pixels) (N > n)
- Super-resolution factor $d = \frac{N}{n}$ & Compression ratio $m = \frac{k}{d}$
- Forward model: $y = \tau A x + n$ where $n \in \mathbb{R}^{nk}$ is AWGN and $A = D\Lambda$
- $\tau = \frac{d}{k}$ reflects the effects of increased pixel size and decreased integration time per DMD mask, given constant noise level

5

$$y = \tau A x + n$$

$$\min_{x} \alpha_1 \|Fx\|_1 + \alpha_2 TV(x) \quad subject \ to \quad \left\|Ax - \frac{y}{\tau}\right\|_2 \le \epsilon/\tau \ , x[i] \ge 0 \ \forall i$$

- *F* : Sparsifying transform such as the Fourier
- *TV*(.) : Total variation operator
- ϵ : Bound on the noise
- Weighted sum is due to superior performance
- ADMM based reconstruction algorithm (Kar et al., 2018)

Complex Domain : Magnetic Particle Imaging System Calibration

y = Xp + n

- $y \in C^M$: measurements, $p \in R^N$: Calibration Scene
- $X \in C^{M \times N}$: System matrix (SM), $n \in C^N$: Complex AWGN

aselsan

research center

Taking multiple measurements using different p, a single row of X,
i.e. x⁽ⁱ⁾:

7

$$y^{(i)} = P^T x^{(i)} + n$$

-P: Binary coding scene, $y^{(i)}$: *i*-th row of SM sensed with P

Magnetic Particle Imaging – Reconstruction

$$y^{(i)} = P^T x^{(i)} + n$$
$$\min_{x} \|Dx^{(i)}\|_1 \quad subject \ to \ \|P^T x^{(i)} - y^{(i)}\|_2 \le \epsilon_i$$

- *D*: Sparsifying transform such as the DCT
- Entries of *P* are drawn from a symmetric Bernoulli distribution
- ADMM based reconstruction algorithm (Ilbey et al., 2018)
- Can be considered as a special case of the FPA-imaging problem

8

aselsan

research center

Compressive Sensing Perspective

• Theorem 1.2 (Candes, 2008)

$$\|\hat{x} - x\|_{2} \le C_{0} s^{-0.5} \|x - x_{s}\|_{1} + C_{1} \epsilon$$
(1)
$$C_{0} = 2 \frac{1 - (1 - \sqrt{2})\delta_{2s}}{1 - (1 + \sqrt{2})\delta_{2s}}, C_{1} = 4 \frac{\sqrt{1 + \delta_{2s}}}{1 - (1 + \sqrt{2})\delta_{2s}}$$

- \hat{x} : Estimate of x
- $x_s: s sparse version of x$
- $\epsilon = m\sigma^2$: Bound on the noise
- δ_{2s} : Restricted isometry constant
- Increasing *m* increases the second term in (1)
- δ_{2s} is monotonically decreasing function of m
- C_0 and C_1 calculations are NP-hard, thus the bound is an NP-hard problem
- There exists an optimal number of measurements for a given problem, but its solution is impractical

- ADMM
- Problem formulation:

 $\begin{array}{ll} \underset{\mathbf{x},\mathbf{z}}{\text{minimize}} & f_1(\mathbf{x}) + f_2(\mathbf{z}) \\ \text{subject to} & \mathbf{G}\mathbf{x} + \mathbf{Q}\mathbf{z} - \mathbf{r} = 0 \end{array}$

- $f_1(.)$ and $f_2(.)$ separable convex functions
- Two small problems instead of one large problem
- Updates x and z alternatingly

Solved Problem in ADMM Form

• Efficient solutions of ADMM steps (Kar et al., 2018)

• Image size : 360 × 360

ase

- FPA size : $30 \times 30, 60 \times 60, 90 \times 90$
 - Super resolution ratios (d) : 144, 36, 16 respectively
- Input pSNR levels (for full integration time) : 40 dB, 50 dB, 60 dB
- Compression ratios (m) : 0.05, 0.10, 0.15, ..., 0.80
- Each experiment is repeated 10 times with different noise & mask realizations

12

Results : FPA imaging

aselsan

Results : FPA imaging

aselsan

Results : FPA imaging

aselsan research center

- Reconstruction improves up to some measurement level, and decrease afterwards
- As the noise level decreases, optimal number of measurements favors more measurements
- All three images result in similar performance and optimal number of measurements
- Reconstruction performance decreases with lower FPA resolution

- Image size : 40×20
- Input pSNR levels : 0 dB, 10 dB,..., 40 dB
- Compression ratios (m) : 0.05, 0.10, 0.15, ..., 0.80

aselsan

research center

Conclusions & Future Work

- Practical analysis of two coded compressive imaging techniques
 - FPA imaging and MPI
 - Under different noise, super resolution, compression ratio settings
- Optimal number of measurements favor higher number of measurements as the input pSNR increases, and vice versa
- Finding it analytically requires knowledge of sparsity level which is impractical
- Shortcomings
 - Linear scaling in signals
 - Additional non-idealities such as photon noise

THANK YOU

- Contact
 - Oğuzhan Fatih Kar ofkar@aselsan.com.tr
 - Alper Güngör alpergungor@aselsan.com.tr
 - Serhat Ilbey silbey@aselsan.com.tr
 - Dr. Can Barış Top cbtop@aselsan.com.tr
 - Dr. H. Emre Güven heguven@aselsan.com.tr

