

Bayesian Quickest Change Point Detection with Multiple Candidates of Post-Change Models

Samrat Nath and Jingxian Wu

Department of Electrical Engineering, University of Arkansas, U.S.A.

27 November 2018

- Introduction
- Problem Formulation
- Quickest Change Detection (QCD) Algorithm
- Analytical Results
- Simulation Results
- Conclusions

INTRODUCTION (1/4)

- Change-point Detection:
 - Process of identifying time instants at which the distribution of a random process changes.
 - **Applications:** Signal and image processing, quality control engineering, seismology, financial markets, etc.

[1] Polunchenko, Aleksey S., and Alexander G. Tartakovsky. "State-of-the-art in sequential change-point detection." Methodology and computing in applied probability 14, no. 3 (2012): 649-684.

INTRODUCTION (2/4)

- Categories of Detection Procedures:
 - Based on nature of observations:
 - Offline: based on the observations of the entire time sequence
 - Online: based on currently observed samples (real-time)
 - Based on knowledge of change-point:
 - **Bayesian:** Prior probability of the change-point is known
 - Non-Bayesian: Prior is unknown

INTRODUCTION (3/4)

Figure: Two possible scenarios: False alarm (red trajectory), and delayed detection (blue trajectory) [1]

- Quickest Change Detection (QCD):
 - Aims at minimizing detection delay with an upper bound on probability of false alarm [2]

[2] V. V. Veeravalli and T. Banerjee, "Quickest change detection," in Academic Press Library in Signal Processing. Elsevier, 2014, vol. 3, pp. 209–255.

INTRODUCTION (4/4)

- Motivation:
 - There are limited works with unknown or uncertain post-change models.
 - For many applications, the post-change model might be from a finite set of possible models.
 - **Objective:** To design change detection algorithm for systems with multiple post-change models under Bayesian setting.

- Introduction
- Problem Formulation
- QCD Algorithm
- Analytical Results
- Simulation Results
- Conclusions

PROBLEM FORMULATION (1/3)

• Notations:

 $-X_n$: a sequentially observed random sequence, where $n = 1, 2, \cdots$.

$$\mathcal{F}_n^{\check{X}} = \sigma(\mathbf{X}^{1:n})$$
 is σ —algebra generated by $\mathbf{X}^{1:n} = [X_1, \cdots, X_n]$

- θ : Change point

 $-f_{0,n}(X_n|\mathbf{X}^{1:n-1})$: Probability density function (pdf) when $n < \theta$.

$$- f_{i,n}(X_n | \mathbf{X}^{1:n-1})$$
 pdf when $n \geq heta$ for $i = 1, 2, \cdots, M$

- M: number of post-change distribution models

 $-\beta \in \{1, \cdots, M\}$: index for true post-change distribution NIVERSITY OF RKANSAS.

PROBLEM FORMULATION (2/3)

• Bayesian Setting:

– Probability mass function (PMF) for change-point θ

 $P(\theta = k) = \pi_k$, for $k = 1, 2, \cdots$.

- PMF for post-change model index: $\mathbf{P}(\beta = i) = \omega_i$, for $i = 1, \dots, M$.

- Sequential Test (δ):
 - To detect change point θ based on sequentially observed data X_n
 - $-\hat{\theta}$: estimate of change point
 - Sequential test can be defined as $\delta : \mathcal{F}_n^X \to \hat{\theta}$
 - Needs to be designed by optimizing with respect to detection delay and false detection

PROBLEM FORMULATION (3/3)

- Performance Metrics:
 - Average Detection Delay:

$$ADD(\delta) = \mathbb{E}[\hat{\theta} - \theta | \hat{\theta} \ge \theta]$$

- Probability of False Alarm:

$$PFA(\delta) = \mathbf{P}(\hat{\theta} < \theta | \mathcal{F}_n^X)$$

• Optimization Problem:

(P1)	minimize	$\mathrm{ADD}(\delta)$
	subject to	$PFA(\delta) < \alpha.$

- Introduction
- Problem Formulation
- QCD Algorithm
- Analytical Results
- Simulation Results
- Conclusions

QCD ALGORITHM (1/2)

• Test Statistic:

- At moment n, the detector needs to decide between two hypotheses

$$\mathcal{H}_1: \theta \le n,$$

 $\mathcal{H}_0: \theta > n.$

- Test statistic is the ratio of posterior probabilities:

$$\Delta(n) = \frac{\mathbf{P}(\mathcal{H}_1 | \mathcal{F}_n^X)}{\mathbf{P}(\mathcal{H}_0 | \mathcal{F}_n^X)} = \frac{\sum_{k=1}^n \pi_k \cdot d\mathbf{P}(\mathbf{x}^{1:n} | \theta = k)}{\Omega_n \cdot d\mathbf{P}(\mathbf{x}^{1:n} | \theta > n)}$$
$$= \sum_{i=1}^M \omega_i \sum_{k=1}^n \frac{\pi_k}{\Omega_n} \prod_{t=k}^n \frac{f_{i,t}(X_t | \mathbf{X}^{1:t-1})}{f_{0,t}(X_t | \mathbf{X}^{1:t-1})},$$

where $\Omega_n = \mathbf{P}(\theta > n) = \sum_{k=n+1}^{\infty} \pi_k$.

QCD ALGORITHM (2/2)

- Proposed Algorithm:
 - **Definition 1**: For a given PFA upper bound α , the change point is detected as

$$\delta_1: \hat{\theta}_1 = \inf\left\{n \ge 1: \Delta(n) \ge \frac{1-\alpha}{\alpha}\right\}$$

- δ_1 can be considered as an extension of the **Shiryaev** procedure [3], which only considers the case of one known post-change model.

[3] A. N. Shiryaev, "On optimum methods in quickest detection problems," Theory of Probability & Its Applications, vol. 8, no. 1, pp. 22–46, 1963.

- Introduction
- Problem Formulation
- QCD Algorithm
- Analytical Results
- Simulation Results
- Conclusions

ANALYTICAL RESULTS (1/4)

- Probability of False Alarm: – Lemma 1: $PFA(\delta_1) \le \alpha$
- <u>Sketch of proof:</u>

- Let
$$p(n) = \mathbf{P}(\mathcal{H}_1 | \mathcal{F}_n^X) = \mathbf{P}(\theta \le n | \mathcal{F}_n^X)$$

- $\Delta(n) = \frac{\mathbf{P}(\mathcal{H}_1 | \mathcal{F}_n^X)}{\mathbf{P}(\mathcal{H}_0 | \mathcal{F}_n^X)} = \frac{p(n)}{1 - p(n)}$
- $p(n) = 1 - \frac{1}{1 + \Delta(n)}$
- Since, $\delta_1 : \hat{\theta}_1 = \inf\left\{n \ge 1 : \Delta(n) \ge \frac{1 - \alpha}{\alpha}\right\}$
- $\Delta(\hat{\theta}_1) \ge \frac{1 - \alpha}{\alpha} \Longrightarrow p(\hat{\theta}_1) \ge 1 - \alpha$
- $\mathbf{PFA}(\delta_1) = \mathbf{P}(\hat{\theta}_1 < \theta | \mathcal{F}_n^X) = 1 - p(\hat{\theta}_1) \le \alpha$

ANALYTICAL RESULTS (2/4)

• Average Detection Delay:

$$ADD(\delta) = \frac{\mathbb{E}(\hat{\theta} - \theta)^{+}}{\mathbf{P}(\hat{\theta} \ge \theta)}$$
$$= \frac{1}{\mathbf{P}(\hat{\theta} \ge \theta)} \sum_{k=1}^{\infty} \pi_{k} \mathbf{P}_{k}(\hat{\theta} \ge k) \mathbb{E}_{k}(\hat{\theta} - k | \hat{\theta} \ge k),$$

$$x^+ = \max(0, x)$$

- \mathbf{P}_k : probability measure when $\theta = k$
- \mathbb{E}_k : corresponding expectation operator

ANALYTICAL RESULTS (3/4)

• Asymptotic Notations:

-
$$f(x)$$
 and $g(x)$ are continuous function such that

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \infty.$$

- Notation 1:
$$f(x) \preceq g(x) \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} \le 1.$$

- If both
$$f(x) \preceq g(x)$$
 and $g(x) \preceq f(x)$, then two functions

are asymptotically equivalent.

$$f(x) \underset{x \to x_0}{\asymp} g(x) \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

ANALYTICAL RESULTS (4/4)

• Asymptotic Optimality of Proposed QCD Algorithm:

- Theorem 1:
$$\mathbb{E}_k[(\hat{\theta}_1 - k)^+] \preceq \min_{\alpha \to 0} \min_i \left[\frac{\log\left(\frac{1-\alpha}{\alpha}\right) - \log\omega_i}{D_i + |\log(1-\rho)|} \right]$$

- Theorem 2:
$$\mathbb{E}_k[(\hat{\theta}_1 - k)^+] \succeq_{\alpha \to 0} \min_i \left[\frac{\log\left(\frac{1-\alpha}{\alpha}\right) - \log\omega_i}{D_i + |\log(1-\rho)|} \right]$$

- Theorem 3: ADD
$$(\delta_1) \underset{\alpha \to 0}{\asymp} \min_i \left[\frac{\log\left(\frac{1-\alpha}{\alpha}\right) - \log \omega_i}{D_i + |\log(1-\rho)|} \right]$$

- Here,
 - D_i = E [log f_i(X)/f₀(X)] is Kullback-Leibler (KL) divergence.
 π_k = (1 − ρ)^{k−1}ρ is the prior PMF of change-point θ.

- Introduction
- Problem Formulation
- QCD Algorithm
- Analytical Results
- Simulation Results
- Conclusions

SIMULATIONS (1/2)

- Environment:
- Two post-change models
- Models follow Normal distribution,

 $f_i \sim \mathcal{N}(0, \sigma_i^2)$

- For pre-change model, $\sigma_0^2\,=\,1$
- Geometric dist. $\rho = 0.1$
- Asymptotic results give good predictions regarding trend of detection delay.

Figure: Average Detection Delay

SIMULATIONS (2/2)

- Environment:
- Models follow: $f_i \sim \mathcal{N}(\mu_i, 1)$
- For pre-change model, $f_0 \sim \mathcal{N}(1,1)$
- Four post-change models $\mu_1 = 0.6, \mu_2 = 0.8,$ $\mu_3 = 1.2, \mu_4 = 1.4$
- Mixture model in Shiryaev Procedure [3]:

$$h(x) = \sum_{i=1} \omega_i f_i(x)$$

[4] T. L. Lai, "Information bounds and quick detection of parameter changes in stochastic systems," IEEE Transactions on Information Theory, vol. 44, no. 7, pp. 2917–2929, 1998

CONCLUSIONS

- Summary:
 - Proposed a threshold-based sequential test for Bayesian QCD when there are multiple possible post-change models.
 - Analytical ADD has been obtained through asymptotic analysis when the PFA is small.
 - Proposed algorithm is asymptotically optimal in terms of ADD.
 - Proposed algorithm outperforms the Shiryaev procedure with a mixture post-change model.
- Future Direction:
 - QCD algorithm in non-Bayesian setting.
 - Detection of multiple change-points.
 - Both change-point detection and identification of post-change model.

REFERENCES

- [1] Polunchenko, Aleksey S., and Alexander G. Tartakovsky. "State-of-the-art in sequential change-point detection." Methodology and computing in applied probability 14, no. 3 (2012): 649-684.
- [2] V. V. Veeravalli and T. Banerjee, "Quickest change detection," in Academic Press Library in Signal Processing. Elsevier, 2014, vol. 3, pp. 209–255.
- [3] A. N. Shiryaev, "On optimum methods in quickest detection problems," Theory of Probability & Its Applications, vol. 8, no. 1, pp. 22–46, 1963.
- [4] T. L. Lai, "Information bounds and quick detection of parameter changes in stochastic systems," IEEE Transactions on Information Theory, vol. 44, no. 7, pp. 2917–2929, 1998

Thanks! for your attention

Questions?

