
Kobe University Integrated Silicon & Software architecture laboratory
1

Delayed Weight Update for Faster 

Convergence in Data-parallel Deep Learning

Tetsuya Youkawa, Haruki Mori, Yuki Miyauchi,

Kazuki Yamada, Shintaro Izumi, 

Masahiko Yoshimoto, and Hiroshi Kawaguchi

Kobe University, Kobe, Japan



2
Kobe University Integrated Silicon & Software architecture laboratory

Outline

1. Introduction

a. Deep learning

b. Parallelization for deep learning

2. Proposed data-parallelism

3. Experimental result

4. Conclusion



3
Kobe University Integrated Silicon & Software architecture laboratory

Background: Deep learning
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Deep learning has succeeded in various tasks with 

different kinds of data by changing the form

• Convolutional Neural Network for image data

• Recurrent Neural Network for time series data

• Deep Q Network for playing video game

• etc…
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Background: CNN

The evolution of the algorithm made it possible to deepen the model.

 Accuracy improved dramatically, but the amount of computation and 

parameter exploded in accordance with the number of layers.

 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Alfredo Canziani, et al., arXiv:1605.07678, Apr., 2017.
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Background: CNN’s target
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Along with the development, target data gets more complicated. 

Then the CNN model gets deeper, and so computational 

complexity will get larger.
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Background: CNN’s challenge

 Learning flow w/ single worker

Due to the large amount of computation, devices 

specialized for matrix computation like GPUs are used.

However, since it is necessary to calculate millions of 

iterations, it is difficult to learn in realistic time even with 

such a device.

 Distributed deep learning has received a remarkable 

amount of attention.

Forward BackwardWorker Forward

1 iteration

Update parameters
Gradient calculation step
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Model parallelism

Dean, Jeffrey et al. “Large Scale Distributed Deep Networks”

 Model parallelism divides dimensions of model.

- Each worker calculates the different part of the model.

 No need for parameter integration

 Possibility of a huge model implementation even when 

the model cannot fit into GPU 

× Model-dependent

× Low versatility
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Data parallelism

Dean, Jeffrey et al. “Large Scale Distributed Deep Networks”

Simple implementation for homogeneous workers

Dominant method for high versatility

× Need for parameter integration
- For VGG-F network, it is necessary to communicate 60M 

parameter per thread.

 Data parallelism divides dimensions of data.

- Each worker calculates a different batch data.
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Data parallelism challenge

 Data parallel learning flow w/ two GPUs
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For worker, ts is the latency for next step. Particulary when the size of 

gradient is large, communication latency becomes bottleneck.

 Our target is to eliminate this communication latency.
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1 iteration time = tw + ts
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Proposed method

In the conventional data parallel method, workers 

need to wait until they receive the new weight.

 When the weight size is large, communication 

latency hinders speeding up by parallelism.

Then, we proposed a method 

- to calculate the gradient using weights 

delayed by one step.

- to overlap the communication with the 

gradient calculation.
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Proposed method

F B

F B

F B

F B

F

F

 Proposed data parallel learning flow w/ two GPUs

C C

Server

U

Communication 

bus
CC C

U

max(tw,ts)

F B

F B

C C

U

With proposed method, gradient calculation doesn’t 

reflect the last batch update, and so we can overlap the 

parameter integration with the gradient calculation.
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Proposed method
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Gradient calculation reflects 2 steps earlier batch. The 

proposed method can eliminate the communication bottleneck. 

 However, it is not naïve SGD, and so we must verify the 

accuracy.
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Acceleration ratio

 Conventional method takes (tw + ts) to process 1 iteration.

 Proposed method takes the longer one of tw and ts

 Compared to conventional data parallelism, the proposed 

method accelerates learning by rws. 

 rws can be expressed as follows:

𝒕𝒘 = 𝐠𝐫𝐚𝐝𝐢𝐞𝐧𝐭 𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐭𝐢𝐦𝐞
𝒕𝒔 = 𝐜𝐨𝐦𝐦𝐮𝐧𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐚𝐧𝐝 𝐮𝐩𝐝𝐚𝐭𝐞 𝐭𝐢𝐦𝐞

𝒓𝒘𝒔 =
𝒕𝒘 + 𝒕𝒔

𝒎𝒂𝒙 𝒕𝒘, 𝒕𝒔
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Experimental environment

CPU Core i7 6700K

GPU Nvidia Geforce GTX 1080

Framework Matconvnet

Communication interface

(CPU-GPU)
PCI express Gen3 x16

Network
VGG-F network

ResNet-50

Optimizer MomentumSGD

Learning rate

(based on linear scaling rule)

VGG-F: 0.001 * th

ResNet: 0.025 * th

(divided by 10 every 30 epoch)

Dataset
ImageNet-1k

(50k images for train)

th: number of threads

A. Krizhevsky, “One weird trick for parallelizing convolutional neural network”
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Training convergences evaluation

VGG-F network

The final accuracy degradation is 1.5% at the maximum.There is a 

possibility that this accuracy degradation can be suppressed by changing 

optimizer or tuning parameters well.
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Training convergences evaluation

ResNet-18

Resnet-18’s result exhibits a similar tendency with VGG-f’s result.

The final accuracy degradation is 1.4% at the maximum.

Normalized time [a.u.]

60

50

40

30

20

10

0

V
a
li
d

a
ti

o
n

T
o

p
 5

 a
c
c
u

ra
c
y
 [

%
]

#Threads th=2,Conv.
#Threads th=4,Conv.
#Threads th=8,Conv.
#Threads th=2,Prop.
#Threads th=4,Prop.
#Threads th=8,Prop.

up to 1.4% difference

th: number of threads



Kobe University Integrated Silicon & Software architecture laboratory
20

Acceleration ratio evaluation

We calculated the ratio rws by measuring communication and calculation time.

In ResNet50, rws reaches 1.92 when the number of threads is eight and the 

batch size is 16.
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Conclusion

• In conventional data parallelism, when the gradient 

data size is large, communication latency can be 

bottleneck.

• Using one step delayed weights for gradient 

calculation is proposed.

– Nevertheless proposed method is not naïve SGD, there is 

up to 1.5% difference between the accuracy of proposed 

method and that of conventional one.

– We confirmed that the proposed method actually 

accelerates learning with general equipment. 

– Particularly in ResNet50, rws reaches 1.92 when the 

number of threads is eight and the batch size is 16.


