Source Separation in the Presence of Side Information: Necessary and Sufficient Conditions for Reliable De-mixing
 Zahra Sabetsarvestani¹, Francesco Renna², Franz Kiraly¹, Miguel Rodrigues ${ }^{1}$

1 University College London

${ }^{2}$ Instituto de Telecomunicações and Faculdade de Ciências da Universidade do Porto mimit

Introduction	
Research Background - Source Separation with Side information [1] - Compressive Sensing with Side information [2] - Compressive Sensing with Gaussian Mixture model (GMM) [3]	Contribution - Studying the source separation problem in the presence of side information - Providing the necessary and sufficient conditions for the reliable separation
Model	

Source Separation with Side information

Side Information 2
We will be assuming that ($\boldsymbol{x}_{1}, \boldsymbol{y}_{\mathbf{1}}$) and ($\boldsymbol{x}_{2}, \boldsymbol{y}_{2}$) are statistically independent drawn from joint GMM, characterized by underlying class labels (C_{1}, S_{1}) and (C_{2}, S_{2}), obey the joint probability density function (pdf):

$$
\begin{aligned}
& p\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1} \mid C_{1}=j_{1}, S_{1}=k_{1}\right) \sim N\left(\boldsymbol{\mu}_{x_{1} y_{1}}^{\left(j_{1} x_{1}\right)}, \overline{\boldsymbol{\Sigma}}_{x_{1} y_{1}}^{\left(j_{1} k_{1}\right)}\right) \\
& p\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2} \mid C_{2}=j_{2}, S_{2}=k_{2}\right) \sim N\left(\boldsymbol{\mu}_{x_{2} y_{2}}^{\left(j_{2} x_{2}\right)}, \overline{\boldsymbol{\Sigma}}_{x_{2} y_{2}}^{\left(j_{2} k_{2}\right)}\right)
\end{aligned}
$$

where $\boldsymbol{\mu}_{x_{1} y_{1}}^{\left(j_{1} k_{1}\right)}, \boldsymbol{\mu}_{x_{2} y_{2}}^{\left(j_{2} k_{2}\right)}$ and $\overline{\boldsymbol{\Sigma}}_{x_{1} y_{1}}^{\left(j_{1} k_{1}\right)}, \overline{\boldsymbol{\Sigma}}_{x_{2} y_{2}}^{\left(j_{2} k_{2}\right)}$ are the mean and covariance
 covariance matrices are assumed to be low-rank where we denote such ranks by $\quad r_{x_{1} y_{1}}^{\left(j_{1} k_{1}\right)}=\operatorname{rank}\left(\overline{\mathbf{\Sigma}}_{x_{1} y_{1}}^{\left(j_{1} k_{1}\right)}\right), r_{x_{2} y_{2}}^{\left(j_{2} z_{2}\right)}=\operatorname{rank}\left(\overline{\mathbf{\Sigma}}_{x_{2} y_{2}}^{\left(j_{2} k_{2}\right)}\right), \quad r_{y_{1}}^{\left(j_{1} k_{1}\right)}=$ $\operatorname{rank}\left(\boldsymbol{\Sigma}_{y_{1}}^{\left(j_{1} k_{1}\right)}\right), r_{y_{2}}^{\left(j_{2} k_{2}\right)}=\operatorname{rank}\left(\boldsymbol{\Sigma}_{y_{2}}^{\left(j_{2} k_{2}\right)}\right)$. We use the MMSE as the performance measure denoted by $\operatorname{MMSE}\left(\sigma^{2}\right)=E\left[\left\|x-E\left(x \mid w, y_{1}, \boldsymbol{y}_{2}\right)\right\|^{2}\right]$ where $\boldsymbol{x}=\binom{x_{1}}{x_{2}}$

Analysis

Necessary and sufficient condition for reliable separation
$\lim _{\sigma_{2} \rightarrow 0} \operatorname{MMSE}\left(\sigma^{2}\right)=0 \Rightarrow m \geq r_{x_{1} y_{1}}^{\left(j_{1} k_{1}\right)}-r_{x_{2} y_{2}}^{\left(j_{2} k_{2}\right)}-r_{y_{1}}^{\left(j_{1} k_{1}\right)}-r_{y_{2}}^{\left(j_{2} k_{2}\right)}$ and ${ }_{\left.D^{\left(\sigma_{1}\right.} k_{1} j_{2} k_{2}\right)}^{\sigma^{2} \rightarrow 0}$ for $\forall\left(j_{1} k_{1}, j_{2} k_{2}\right) \in \mathcal{L}$, where \mathcal{L} represents the set of probable labels and

$$
\begin{aligned}
D^{\left(j_{1} k_{1} j_{2} k_{2}\right)} & =\operatorname{dim}\left(\operatorname{Im}\left(\boldsymbol{\Sigma}_{x_{1} \mid y_{1}}^{\left(j_{1} k_{1}\right)}\right) \cap \operatorname{Im}\left(\boldsymbol{\Sigma}_{x_{2} \mid y_{2}}^{\left(j_{2} k_{2}\right)}\right)\right) \\
\boldsymbol{\Sigma}_{x_{1} \mid y_{1}}^{\left(j_{1} k_{1}\right)} & =\boldsymbol{\Sigma}_{x_{1}}^{\left(j_{1} k_{1}\right)}-\boldsymbol{\Sigma}_{x_{1} y_{1}}^{\left(j_{1} k_{1}\right)}\left(\boldsymbol{\Sigma}_{y_{1}}^{\left(j_{1} k_{1}\right)}\right)^{-1} \boldsymbol{\Sigma}_{y_{1} x_{1}}^{\left(j_{1}\right)_{1}} \\
\boldsymbol{\Sigma}_{x_{2} \mid y_{2}}^{\left(j_{2} k_{2}\right)} & =\boldsymbol{\Sigma}_{x_{2}}^{\left(j_{2} k_{2}\right)}-\boldsymbol{\Sigma}_{x_{2} y_{2}}^{\left(j_{2} k_{2}\right)}\left(\boldsymbol{\Sigma}_{y_{2}}^{\left(j_{2} k_{2}\right)}\right)^{-1} \boldsymbol{\Sigma}_{y_{2} x_{2}}^{\left(j_{2} k_{2}\right)}
\end{aligned}
$$

The sufficient condition is only one measurement away from the necessary condition.

Numerical Results

- Synthetic Data

$$
\begin{aligned}
& \text { - Setup } \\
& n_{x}=n_{y_{1}}=n_{y_{2}}=10,
\end{aligned}
$$

$\left|C_{1}\right|=\left|C_{2}\right|=\left|S_{1}\right|=\left|S_{2}\right|=$ 1 , all means are zero and all covariance matrices are generated randomly such that $r_{x_{1} y_{1}}=r_{x_{2} y_{2}}=5$ and $r_{y_{1}}=r_{y_{2}}=3$.

- Real Data (Ghent Altarpiece Dataset)

Given $\mathbf{w}=\boldsymbol{\Phi}\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)$ (Combined X -rays from Ghent Altarpiece) Recover \boldsymbol{x}_{1} and \boldsymbol{x}_{2} (individual X -rays) In the presence of side informations $\boldsymbol{y}_{\mathbf{1}}$ and $\boldsymbol{y}_{\mathbf{2}}$ (visible Images)

Combined X-ray

References

[1] N. Deligiannis, J. F. C. Mota, B. Cornelis, M. R. D. Rodrigues, and I Daubechies, "Multi-modal dictionary learning for image separation with application in art investigation," IEEE Transactions on Image Processing, vol. 26, no. 2, pp. 751-764, Feb 2017
[2] F. Renna, L. Wang, X. Yuan, J. Yang, G. Reeves, R. Calderbank, L. Carin, and M. R. D. Rodrigues, "Classification and reconstruction of high-dimensional signals from low-dimensional features in the presence of side information," IEEE Transaction on Information Theory, vol. 62, no. 11, pp. 6459-6492, Nov 2016.
[3] F. Renna, R. Calderbank, L. Carin, and M. R. D. Rodrigues, "Reconstruction of signals drawn from a gaussian mixture via noisy compressive measurements," IEEE Transactions on Signal Processing, vol. 62, no. 9, pp. 22652277, May 2014

