Downlink Channel Covariance Estimation in Realistic FDD Massive MIMO Systems

Spatial Covariance Matrix

- Knowledge of $\mathbf{R}^d = \mathbb{E}[\mathbf{h}^d(\mathbf{h}^d)^H]$ at the base station:
- Crucial for many DL CSI acquisition and beamforming algorithms in FDD Massive MIMO systems.
- However, difficult to obtain in practical FDD Massive MIMO systems.

DL Covariance Estimation

- Conventional techniques based on DL training and feedback unfeasible in Massive MIMO.
- At the BS, \mathbf{R}^u is generally easier to estimate.
- In FDD systems, $\mathbf{R}^d \neq \mathbf{R}^u$.
- However, a weaker form of channel reciprocity in the angular domain can be assumed.

FDD UL/DL Covariance **Conversion Problem**

 \blacktriangleright Estimation of \mathbf{R}^d from \mathbf{R}^u .

Existing Approaches: Issues

 $oldsymbol{R} = \mathbb{E}[oldsymbol{h}oldsymbol{h}^{I}]$

- coordinate system.
- $\boldsymbol{a}_V, \boldsymbol{a}_H : \Omega \to \mathbb{C}^{N \times 1}$ are the BS antenna array responses for the vertical and for the horizontal polarizations.
- $\rho_V, \rho_H : \Omega \to \mathbb{R}^+$ are the frequency invariant angular power spectra for the vertical and for the horizontal polarizations (V-APS, H-APS).
- \blacksquare It can be derived from 3GPP-3D-like channel models, both for narrow-band and wide-band OFDM systems.
- |1| L. |2| L.

Lorenzo Miretti[†], Renato L.G. Cavalcante^{*}, and Slawomir Stanczak^{*}

Communication Systems Department, EURECOM[†] Fraunhofer Heinrich Hertz Institute and Technical University of Berlin*

• Most of the available solutions rely on simple channel models and/or require specific array geometries (e.g. ULA). They often fail to address important effects such as propagation in 3Denvironments, polarization, and non-ideal array geometries.

A Novel Covariance Model for Dual-polarized Arrays

$${}^{H}] = \int_{\Omega} \rho_{V}(\boldsymbol{\theta}) \boldsymbol{a}_{V}(\boldsymbol{\theta}) \boldsymbol{a}_{V}(\boldsymbol{\theta})^{H} d\boldsymbol{\theta} + \int_{\Omega} \rho_{H}(\boldsymbol{\theta}) \boldsymbol{a}_{H}(\boldsymbol{\theta}) \boldsymbol{a}_{H}(\boldsymbol{\theta})^{H} d\boldsymbol{\theta}$$

• $\Omega = [-\pi, \pi] \times [0, \pi]$ is a spherical

Core idea: Joint V-APS and H-APS estimation formalized as a convex feasibility problem: very effective solutions based on projection methods on an infinite-dimensional Hilbert space.

- covariance model.
- equipped with the inner product
- We estimate $(\rho_V, \rho_H) \in \mathcal{H}$ by solving

where

$$V_m := \{ \langle (\rho_V$$

- r_m^u is the *m*th element of vec $(\left[\Re\{\mathbf{R}^u\} \Im\{\mathbf{R}^u\}\right])$.
- variety $P_V(0)$ (Algorithm 1).
- type $\langle (g_{V,m}^{u}, g_{H,m}^{u}), (g_{V,l}^{u}, g_{H,l}^{u}) \rangle$.

Miretti, Renato L.G. Cavalcante and Slawomir Stanczak, "FDD massive MIMO channel spatial covariance conversion using projection methods", IEEE ICASSP, 2018 . Miretti, Renato L.G. Cavalcante and Slawomir Stanczak, "Downlink channel spatial covariance estimation in realistic FDD massive MIMO systems", IEEE GlobalSIP, 2018

Covariance Conversion using Projection Methods

$$\begin{aligned} \boldsymbol{R}^{u} &= \int_{\Omega} \rho_{V}(\boldsymbol{\theta}) \boldsymbol{a}_{V}^{u}(\boldsymbol{\theta}) \boldsymbol{a}_{V}^{u}(\boldsymbol{\theta})^{H} d\boldsymbol{\theta} + \int_{\Omega} \rho_{H}(\boldsymbol{\theta}) \boldsymbol{a}_{H}^{u}(\boldsymbol{\theta}) \boldsymbol{a}_{H}^{u} \\ \boldsymbol{R}^{d} &= \int_{\Omega} \rho_{V}(\boldsymbol{\theta}) \boldsymbol{a}_{V}^{d}(\boldsymbol{\theta}) \boldsymbol{a}_{V}^{d}(\boldsymbol{\theta})^{H} d\boldsymbol{\theta} + \int_{\Omega} \rho_{H}(\boldsymbol{\theta}) \boldsymbol{a}_{H}^{d}(\boldsymbol{\theta}) \boldsymbol{a}_{H}^{d} \end{aligned}$$

• We obtain an estimate $(\hat{\rho}_V, \hat{\rho}_H)$ of (ρ_V, ρ_H) based on the knowledge of \mathbf{R}^u , expression (1), and known properties of (ρ_V, ρ_H) . **2** We compute an estimate of \mathbf{R}^d from (2), and by substituting (ρ_V, ρ_H) with its estimate $(\hat{\rho}_V, \hat{\rho}_H)$.

Proposed Covariance Conversion Scheme

Extension of the ideas in [1] to the considered realistic

• Derived by focusing on the Hilbert space $\mathcal{H} = L^2[\Omega] \times L^2[\Omega]$

 $\langle (f_V, f_H), (g_V, g_H) \rangle := \int_{\Omega} f_V(\boldsymbol{\theta}) g_V(\boldsymbol{\theta}) d^2 \boldsymbol{\theta} + \int_{\Omega} f_H(\boldsymbol{\theta}) g_H(\boldsymbol{\theta}) d^2 \boldsymbol{\theta}.$ find $(\rho_V, \rho_H)^* \in V := \bigcap_{m=1}^M V_m$,

 $\langle r, \rho_H \rangle, (g^u_{V,m}, g^u_{H,m}) \rangle = r^u_m \}.$

• $g^u_{(\cdot),m}$ is the *m*th element of vec $\left(\left[\Re\{\boldsymbol{a}^u_{(\cdot)}(\theta)\boldsymbol{a}^u_{(\cdot)}(\theta)^H\} \Im\{\boldsymbol{a}^u_{(\cdot)}(\theta)\boldsymbol{a}^u_{(\cdot)}(\theta)^H\} \right] \right)$. Among the solutions, we choose the projection onto the linear

• Closed-form solution available in terms of inner products of the

• A more accurate but more complex variant (Algorithm 2) is available, which takes into account the positivity of the APS.

- No specific array geometry is required.

estimation error.

$(\boldsymbol{\theta})^H d\boldsymbol{\theta}$	(1)
$(\boldsymbol{ heta})^H d\boldsymbol{ heta}$	(2)

Main Advantages

• Algorithm 1 is a simple matrix/vector multiplication $\hat{\boldsymbol{r}}^d = \boldsymbol{F} \boldsymbol{r}^u$ over vectorized covariances.

• **F** depends only on the array geometry and it is

computed once for the entire system lifetime.

• It takes into account polarization and 3D propagation.