Downlink Spectral Efficiency of Cell-Free Massive MIMO with Full-Pilot Zero-Forcing GlobalSIP, November 26-29, 2018

G. Interdonato*[†], M. Karlsson[†], E. Björnson[†], E. G. Larsson[†]

*Ericsson Research, Ericsson AB [†]Div. of Commun. Systems, Dept. of Electrical Eng., Linköping University Linköping, Sweden

Massive MIMO is a key enabler of 5G

- Higher spectral and energy efficiency
- Close-to-optimal linear signal processing
- Scalability relying on TDD system channel reciprocity
- Favorable propagation and channel hardening

Cell-Free Massive MIMO focuses on the user

- baseline Massive MIMO operation
- distributed architecture ensures ubiquitous connectivity
- coherent transmission increases macro-diversity
- user-centric data transmission eliminates cell boundaries

G. Interdonato, E. Björnson, H. Q. Ngo, P. Frenger, and E. G. Larsson, "Ubiquitous Cell-Free Massive MIMO Communications," *Submitted to IEEE Comm. Mag.*

Motivations

maximum-ratio transmission (MRT): fully distributed and scalable

- zero-forcing (ZF): unscalable in cell-free massive MIMO
 - instantaneous CSI from each AP to the CPU
 - centralized precoder computation
 - deal with huge pseudo-inverse matrices
 - precoders from the CPU to the APs

Interference suppression while preserving system scalability?

Full-pilot ZF (fpZF)

Uplink pilots from all the UEs and precoder based on local CSI

$$\mathbf{w}_{l,i_{k}} = \frac{\bar{\mathbf{H}}_{l} \left(\bar{\mathbf{H}}_{l}^{\mathsf{H}} \bar{\mathbf{H}}_{l} \right)^{-1} \mathbf{e}_{i_{k}}}{\sqrt{\mathsf{E} \left\{ \left\| \bar{\mathbf{H}}_{l} \left(\bar{\mathbf{H}}_{l}^{\mathsf{H}} \bar{\mathbf{H}}_{l} \right)^{-1} \mathbf{e}_{i_{k}} \right\|^{2} \right\}}} \in \mathbb{C}^{M \times 1}.$$

- L APs M antennas per AP
- K UEs i_k : index of the pilot used by UE k
- \forall AP: number of precoders = number of orthogonal pilots

$$\mathbf{x}_l = \sum_{k=1}^K \sqrt{\rho_{l,k}} \mathbf{w}_{l,i_k} q_k,$$

E. Björnson, E. G. Larsson, and M. Debbah "Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Should Be Allocated?," *IEEE Trans. on Wireless Comm., Feb 2016*

G. Interdonato^{*†}, M. Karlsson[†], E. Björnson[†], E. G. Larsson[†] Downlink Spectral Efficiency of Cell-Free Massive MIMO with Full-Pilot Zero-Forcing GlobalSIP, November 26-29, 2018

Downlink Spectral Efficiency

$$\begin{split} \mathrm{SE}_{k}^{\mathrm{fpZF}} = \xi^{\mathrm{DL}} \bigg(1 - \frac{\tau_{\mathrm{P}}}{\tau_{\mathrm{C}}} \bigg) \mathrm{log}_{2} \left(1 + \mathrm{SINR}_{k}^{\mathrm{fpZF}} \right) & [\mathrm{bit/s/Hz}], \\ \\ \mathrm{SINR}_{k}^{\mathrm{fpZF}} = \frac{(M - \tau_{\mathrm{P}}) \left(\sum_{l=1}^{L} \sqrt{\rho_{l,k} \gamma_{l,k}} \right)^{2}}{(M - \tau_{\mathrm{P}}) \sum_{t \in \mathcal{P}_{k} \setminus \{k\}} \left(\sum_{l=1}^{L} \sqrt{\rho_{l,t} \gamma_{l,k}} \right)^{2} + \sum_{l=1}^{L} \sum_{t=1}^{K} \rho_{l,t} \left(\beta_{l,k} - \gamma_{l,k} \right) + 1} \end{split}$$

- $\tau_{\rm P}$ orthogonal pilots
- \mathcal{P}_k : set of indices of UEs that transmit the same pilot as UE k
- $\beta_{l,k}$ mean-square of the **real** channel
- $\gamma_{l,k}$ mean-square of the channel **estimate**, $\beta_{l,k} \geq \gamma_{l,k}$
- Necessary condition: $M > \tau_{\rm P}$

Max-min Fairness Power Control

$$\begin{array}{ll} \underset{\{\rho_{l,k} \geq 0\}}{\text{maximize}} & \underset{k}{\min} \operatorname{SE}_{k}^{\operatorname{fpZF}} \\ \text{subject to} & \sum_{k=1}^{K} \rho_{l,k} \leq P_{\max,l}, \; \forall l, \end{array}$$

- Uniformly good service to all the UEs
- Second-order cone program (SOCP)
- Global optimal solution by using interior-point methods

fpZF outperforms MRT, power being equal

- sMRT (mMRT): single(multi)-antenna APs implementing MRT
- ▶ *M*: number of antennas per AP
- L: number of APs

fpZF outperforms MRT, LM being equal

 $LM = 400, K = 20, \tau_{\rm P} = 10.$

- ▶ for system adequately distributed (*L* moderately large), fpZF performs better
- the macro-diversity gain is dominant over the array gain
- ▶ with respect to sMRT, fpZF is M^{fpZF} times more power efficient.

fpZF gains more from the distributed topology

- fpZF benefits more from accurate channel estimates than mMRT
- doubling the per-AP radiated power does not help
- distributing the power over more APs rather than more antennas

- ► fpZF improves SE by suppressing multi-user interference
- ► fpZF is a fully distributed and scalable scheme in that:
 - precoders are designed at each AP
 - ▶ no additional fronthauling overhead, local CSI is utilized.

giovanni.interdonato@ericsson.com giovanni.interdonato@liu.se

Table: Simulation settings

Description	Value	Description	Value
Simulation area	$500{\times}500~\text{m}^2$	$ au_{ m c}$ (symbols)	200
$AP/UE\ distribution$	unif. rand.	$\xi^{ m DL}$	0.5
AP/UE antenna height	15/1.65 m	$\sigma_{\sf sh}$	8 dB
Carrier frequency	2 GHz	Bandwidth	20 MHz
Noise figure	9 dB	K	20
max AP radiated power	200 mW	max UE radiated power	100 mW

