
�✏̂i+1

local,k`(⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
grain,mn(⇠⇠⇠)

3) Inverse transform to get updated strain �✏
local

.
�✏i+1

local,k`(x) iFFT
�
�✏̂i+1

local,k`(⇠⇠⇠)
�

4) Compress sub-sampled field around grain. Communicate
to other GPUs.

5) Obtain summarized convolution result �✏
total

by sum-
ming �✏

local

from other GPUs.

�✏i+1

total

(x) =
JP

j=1

�
�✏i+1

local

(x)
�
j

6) Obtain �✏
grain

in local grain volume from summarized
convolution results using corresponding window W (x).

�✏i+1

grain

(x) = �✏i+1

total

(x) · W (x)

7) Update strain.
✏i+1

grain,k`(⇠⇠⇠) ✏i
grain,k`(⇠⇠⇠)��✏i+1

grain,k`(⇠⇠⇠)

8) Update stress.
�i+1

grain,mn(x) Cmnk`(x) : ✏
i+1

grain,k`(x)

9) Check convergence.
Irregular Domain Decompositions. The large 3-D volume

is decomposed into smaller volumes (grain interiors) using
windows. Number of voxels to be excluded at the grain
boundary must be specified depending on the requirements
of the simulation. For the test case discussed in this paper, we
use a dataset with cubic grains. The cubical shape makes it
easier to test the prototype with simple tapering windowing
techniques such as trapezium or Tukey windows.

Datasets with irregular grains present a challenge in descrip-
tion of smooth regions because they do not have a compact
representation. More complicated pre-processing is used in
such cases. For e.g., a heuristic packing algorithm is used
to pack the irregular shape with compressible regular shapes
(such as rectangles).

Lossy Compression. Lossy compression methods can lead
to higher compression as compared to lossless methods [7],
[8], [9]. A number of lossy compression techniques are being
increasingly used to deal with the problem of storing expo-
nentially growing scientific data [10], [7]. One such scheme is
ISABELA [11], which uses sorting and B-spline fitting [12]
to compress random, noisy data. However, there is a tradeoff
between compression ratio and error because indices of the
sorted data have a storage requirement. In our case, we observe
that grain interiors have smooth stress and strain fields. Hence,
there is no need for sorting data. The stress field in each XY-
plane of the windowed grain volume is modeled using cubic
B-splines, which gives high compression ratios.

Domain-local FFTs. For large grids, GPU memory is a
limiting factor in computing Fourier domain convolution of the
N

1

⇥N
2

⇥N
3

stress signal with Green’s function. However,
by processing each grain separately on the GPU and using
adaptive downsampling, we can compute the full convolution
without storing entire large 3-D signals.

FFT of the sub-volume is computed pencil-wise, one di-
mension at a time. Pencils which are all zeros can be ig-
nored. Transformation in the X-dimension gives a beam of
N

1

⇥ k
2

⇥ k
3

non-zeros. By transforming in Y dimension,

we get a slab of N
1

⇥N
2

⇥ k
3

non-zeros. This is illustrated
in Figure 4. In the Z-dimension, we transform one pencil
at a time. Then, element-wise convolution is performed with
Green’s function, which is computed at required frequency
points using the closed form in [4]. The pencil is immediately
inverse transformed so that N

1

⇥N
2

⇥N
3

grid does not need
to be stored. Since the Green’s function is rapidly decaying in
space domain, convolution of the two signals results in a low-
magnitude and low-varying field in the volume surrounding
the grain. This important observation allows us to develop an
adaptive downsampling scheme to compress the convolution
result and further reduce memory required. Low-resolution
sampling is used in the low-varying part and sampling rate
is higher around grain boundary. This is illustrated for a 1-D
example in Figure 3. Similarly in 3-D, downsampling in the
areas around the k

1

⇥k
2

⇥k
3

sub-volume yields a compressed
model of the convolution result in that region.

Green’s	function

�
Green’s
function Different

sampling
rates

Fig. 3. Adaptive downsampling scheme to reduce memory for storage of
convolution result.

Low	magnitude
field

X	dimension	FFT Y dimension	FFT Z	dimension	FFT
(pencil-wise)

Z	dimension	iFFT
(pencil-wise)

Green’s		function	
pencil

Convolution
result

X	dimension	iFFT Y dimension	iFFT

Fig. 4. Illustration of convolution of isolated grain using domain-local FFT.
The .⇤ indicates element-wise multiplication.

IV. RESULTS AND DISCUSSION

We developed a MATLAB-Fortran prototype workflow of
the proposed method prior to GPU implementation. This sec-
tion describes results and analysis for the prototype. For proof-
of-concept results, a simple microstructure test dataset with
two types of grain orientations was created using MATLAB
for various grid sizes. Grains in each grid of size N3 are 8
cubes of

�
N
2

�
3 points arranged in a periodic lattice. We also

demonstrate results on grids of size N2 ⇥ 8 with 4 grains
of size

�
N
2

�
2 ⇥ 8 points arranged in a periodic lattice. These

microstructures simulate thin composite sheets.
Lossy Compression. Table IV shows results for two dif-

ferent values of grain boundary width (GBW), or the number
of voxels excluded from lossy compression at the boundary.
Reconstruction error (RE) is computed using Frobenius norm
and compression ratio (CR) with respect to original memory

Stress	in	crystals

Boundaries	are	regions		of		
interest

Background	&	Challenges

Original	method	
by		Moulinec and	Suquet

Large-scale	Algorithm	Design	for	Parallel	FFT-based	Simulations	on	GPUs
Anuva Kulkarni,	Franz	Franchetti,	Jelena Kovačević

[1]		H.	Moulinec and	P.	Suquet.	1998.	A	numerical	method	for	computing	the	over-
all	response	of	nonlinear	composites	with	complex	microstructure.	Computer	
methods	in	applied	mechanics	and	engineering	157,	1-2	(1998),	69–94.	
[2]	R.	A.	Lebensohn.	2001.	N-site	modeling	of	a	3D	viscoplastic polycrystal using	
fast	Fourier	transform.	Acta Materialia 49,	14	(2001),	2723–2737.	
[3]	F.	Franchetti et	al.	2018.	FFTX	and	SpectralPack:	A	First	Look.	PFFT	Workshop,	
2018.

The	authors	would	like	to	thank	Dr.	Anthony	Rollett,	Dr.	Vahid Tari	at	
CMU	and	Dr.	Anirban Jana	and	Dr.	Roberto	Gomez	at	Pittsburgh	
Supercomputing	Center	for	all	their	assistance	and	collaboration	with	
this	project.

MSC	Basic	Scheme	is	solved	by	convolution	with	Green’s	
function	using	FFT.		

Increasing	grid	resolution	leads	to	larger	problem	sizes,	which	
must	be	run	with	parallelized	code.	Large	parallel	FFT	
computations	on	stress	tensors	means	high	memory	usage	and	
all-all	communication.

Our	solution:	An	algorithm	and	software	co-design	 for	
heterogeneous	platforms	using	irregular	domain	decomposition	
and	domain	local	FFTs.	

This	work	presents	algorithm	development	and	analysis	in	
MATLAB	with	GPUs	for	the	proposed	solution.

Acknowledgements

References

Figure 1: Proposed method
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (���) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: �̂ imn (���) FFT(� imn (x))
4: Check convergence
5: ��̂i+1kl (���) �̂klmn (���) : �̂ imn (���)

6: Update strain: �̂i+1kl (���) �̂ikl (���) � ��̂i+1kl (���)

7: �i+1kl (x) IFFT(�̂i+1kl (���))

8: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for

Algorithm 2 MSC Alternate Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: for each grain j 2 G do
4: (�̂ imn (���))j FFT((� imn (x))j)
5: Check convergence
6: Update strain: �(�̂i+1kl (���))j �̂klmn (���) : (�̂ imn (���))j

7: �(�i+1kl (x))j IFFT(�(�̂i+1kl (x))j)

8: Gather step: ��i+1kl
P
j
�(�i+1kl)j

9: Update strain: �i+1kl (x) �ikl (x) � ��i+1kl (x)
10: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

various microstructures in a copper dataset. Table 2 shows error for
3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

Iter.
#

% error in stress % error in strain
323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.972 % 0.066 % 0.180 % 1.020 % 0.096 % 0.130 %

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
phase will carefully look at the grain boundary interactions, which
must happen at full resolution. Future work also includes a GPU
implementation that achieves savings in communication by trans-
mitting models for �elds in grains in place of full tensor �elds.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Anthony Rollett, Dr Vahid
Tari and the sta� at Pittsburgh Supercomputing Center for all their
assistance and collaboration with this project.

2

Runs	FORTRAN	code
Writes	data	in	each	iteration

Processes	data
in	MATLAB

Writes	output

Next	iteration

Data	with
approximations

Computational	aspects	for	prototype	development:	
MATLAB-FORTRAN	workflow	for	convergence	analysis is	as	
follows.

Large-scale	scientific	simulations	involving	parallel	Fast	Fourier	
Transforms	(FFTs)	have	extreme	memory	requirements	and	high	
communication	overhead.	It	difficult	to	use	GPUs	to	accelerate	
legacy	Fortran	scientific	codes	because	of	memory	constraints.	But	
GPUs	can	provide	a	lot	of	inexpensive	compute	power.	So	how	can	
we	port	memory-intensive	simulations	to	GPUs?	

A	possible	approach	involves:	
• domain	decomposition
• data	compression
• pruned,	domain-local	FFTs.

c

Consider	Moulinec Suquet’s Basic	Scheme	to	compute	local	stress	
and	strain	fields	in	materials	,	a	partial	differential	equation	(PDE)	
simulation	that	uses	FFTs

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Turner et al. Integrating Materials and Manufacturing Innovation ������ ��� Page 6 of 9

3x3x3x3	stiffness	tensor

stress strain

3D	Hooke’s	law:

C0
ijkluk,lj(x) + ⌧ij,j(x) = 0 (1)

Elliptical	PDE:

K80

K80

8	CORE
CPU
HT

8	CORE
CPU
HT

DRAM

DRAM

PCIe x16

PCIe x16

QPI

2	socket	system	in	ECE	DSC-02	machine
All	bandwidths	are	rough	estimates.	actual	measurements	not	shown	in	fig

Tesla	GPU

Tesla	GPU

Irregular	domains:	Stress/strain	in	grains	is	smooth,	
hence	grains	are	domains	assigned	to	each	GPU.	Grains	
of	size	N	x	N	x	M	used.	

Lossy Compression	with	B-splines:
B-splines	are	composed	of	polynomial	pieces		and	are	
generalizations	of	Bezier	curves	with	breakpoints	called	
‘knots’.	For	a	knot	sequence,

The	ith B-spline	basis	function	of	order	j is

where

FFT-based	Simulations

Analysis	of	results:
Thrust	2:	Deployment	on	heterogeneous	system	with	Tesla	
K80	and	Fortran-GPU	testing

Thrust	3:	Extend	to	visco-plastic	code	[2]	which	includes	
deformation	of	crystals	and	studies	cracking	and	fracture	
formation

as the ones previously considered, but, in this case, in order to assess the rate-sensitivity of the model, four different values of
the axial strain rate component were prescribed: _E33 ¼ 10"3;10"2;10"1 and 1 s"1. The predicted final slope of the stress–
strain curves and the relatively high strain-rate dependence of the effective response, corresponding to the relatively low
stress exponent adopted, are well captured by the model.

Next, we present a convergence analysis of the proposed numerical method. Fig. 3 shows the convergence of two simu-
lations for the copper polycrystal, deformed in uniaxial tension at a axial strain rate _E33 ¼ 1s"1, assuming no hardening
(H = 0) and a very strong linear hardening (H = 1000 MPa, i.e. H ¼ 100# ss

o). Fig. 3(a) shows the effective stress–strain curves
obtained after 15 steps of 0.01%. In order to compare the convergence rate in both cases, Fig. 3(b) and (c) show the average
number (calculated over the entire Fourier grid) of N-R iterations required to solve Eq. (16), as a function of the accumulated
number of (‘‘global’’) iterations of the EVP–FFT model, for the ‘‘no-hardening’’ and ‘‘hardening’’ cases, respectively. (Note that
in Section 2.3 the N-R and global iterations are indicated by the supra-indices (j) and (i), respectively). The alternating white
and gray regions represent the intervals of global iterations required to converge within each deformation increment.
Fig. 3(d) and (e) show the average (calculated over the entire Fourier grid) of the difference between the stress fields r(x)
and kðxÞ, normalized by the effective equivalent stress, as a function of the total number of global iterations, in the no-hard-
ening and hardening cases, respectively. From Fig. 3(b) and (c) it can be observed that for both cases the average number of
N-R iterations decreases, as convergence is approached within each deformation step. However, in the non-hardening case,
this average number of N-R iterations starts from smaller values at the beginning of each deformation step and reaches faster
the value of 2 for every voxel. This difference reflects the approximation incurred in the hardening case by using the N–R
Jacobian given by Eq. (20). In any case, the fact that after some number of global iterations within each deformation step

Fig. 1. Equivalent stress–strain curve predicted with the EVP–FFT model using a 128 # 128 # 128 Fourier grid, for the case of a copper polycrystal with 100
grains, random texture and no strain-hardening, deformed in unixial tension up to 0.3%, and effective responses (initial elastic slope and saturated stress
lines) predicted with EL-FFT for the same elastic constants, and VP-FFT for the same viscoplastic constitutive parameters. Also shown: equivalent stress
fields predicted with EL-FFT and EVP–FFT at 0.01%, and with VP-FFT and EVP–FFT at 0.3%.

Fig. 2. Stress–strain curves predicted for the copper polycrystal, with linear hardening (H = 100 MPa), for four different values of the prescribed axial strain
rate: _E33 ¼ 10"3;10"2;10"1 and 1 s"1.

64 R.A. Lebensohn et al. / International Journal of Plasticity 32–33 (2012) 59–69

The	proposed	MSC	Alternate	Scheme	is	a	co-design	of	algorithm	
and	software	for	heterogeneous	platforms.	It	enables	scaling	of	
stress-strain	simulations	to	large	grids	by	overcoming	high	memory	
requirements	and	communication	bottlenecks.	

Thrust	1:	 Domain	decomposition	framework	for	various	datasets
• Extend	to	different	datasets	with	irregular	grains

MSC-Basic	Algorithm	is	an	FFT-based	algorithm	[1]	for	
calculating	local	stress	and	strain	in	composite	materials.

The	algorithm		solves	a	PDE:

It	requires	large	amounts	of	memory	and	has	a	high	
communication	overhead	which	becomes	a	bottleneck.	

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Turner et al. Integrating Materials and Manufacturing Innovation ������ ��� Page 6 of 9

Approach	overview

Stress	in	crystals
Boundaries	are	critical	
regions		of		interest

Motivation

MSC-Basic	Scheme	requires	very	large	memory	as	
problem	size	scales

0

500

1000

1500

2000

2500

32 64 128 256 512 1024

Memory	usage	(in	Gb)	for	different	grid	sizes

I.	MSC-Alternate	Scheme

Original	method	
by		Moulinec and	Suquet

Our	method

Large	Scale	FFT-Based	Stress-Strain	Simulations	with	Irregular	Domain	Decomposition	
Anuva Kulkarni,	Franz	Franchetti (Advisor),	Jelena Kovačević (Advisor)

II.	Data	models	 Result	highlights
Initialize

Convergence	test

Distribute	data	to	
GPUs

Compute	strain	
field	update	

Gather	data	from	
GPUs

Get	full	stress	
and	strain	field

CPU	action

Iteration
Communication
action

Communication
reduced	by	modeling

MSC-Alternate
Scheme

Proposed	Method

Communication
reduced	by	modeling

More	on	the	nature	of	Green’s	functions:	
We	observe	that	99%	energy	of	the	space-domain	
Green’s	function	is	concentrated	at	central	peak,	in	a	n3
volume,	n<<N.	Hence,	Green’s	function	can	be	truncated	
before	convolution.	
An	Ewald-type	method	may	be	employed	to	avoid	the	1%	
error,	since	errors	accumulate	in	the	iterative	PDE	solver.

Right:
N	=	512
Slice	of	3D	
component	of	
space-domain
Green’s	function

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Turner et al. Integrating Materials and Manufacturing Innovation ������ ��� Page 6 of 9

Example	datasets:	regular	and	irregular	shaped	grains

Stress	and	strain	fields	calculated	by	MSC	– Basic	Scheme	
and	MSC– Alternate	Scheme	are	in	agreement

Data	compression	used	to	model	grain	interior	can	reduce	
communication.																						

Next	Phase
• Algorithm	development:	

o Energy-preserving	truncation	of	the	Green’s	
operator	in	space	domain

o Grain	boundary	interactions
• Performance	test:	GPU	implementation	and	quantify	

savings	in	communication

[1]		H.	Moulinec and	P.	Suquet.	1998.	A	numerical	method	for	computing	the	over- all	
response	of	nonlinear	composites	with	complex	microstructure.	Computer	methods	in	
applied	mechanics	and	engineering	157,	1-2	(1998),	69–94.	
[2]	R.	A.	Lebensohn.	2001.	N-site	modeling	of	a	3D	viscoplastic polycrystal using	fast	
Fourier	transform.	Acta Materialia 49,	14	(2001),	2723–2737.	

The	authors	would	like	to	thank	Dr.	Anthony	Rollett,	Dr.	Vahid Tari	and	the	staff	at	the	Pittsburgh	
Supercomputing	Center	for	all	their	assistance	and	collaboration	with	this	project.

Initialize

Convergence	test

Distribute	data	to	
GPUs

Compute	strain	
field	update	

Gather	data	from	
GPUs

Get	full	stress	
and	strain	field

CPU	action

Iteration
Communication
action

Model	
parameters

Full	data	
field

compress

Compress	data	before	
communication

models	
for	
smooth						
regions

Dataset	1 Dataset	2
Dataset	1

Dataset	2

Programmed	in	FORTRAN, difficult	to	run	on	accelerators	
due	to	memory	requirement.	

Increasing	grid	resolution	is	desirable.	However,	larger	
problem	sizes	must	be	run	with	parallelized	code.	This	
requires	large	parallel	FFT	computations	which	means	high	
memory	usage	and	all-all	communication.

Problem	scale:
• 3x3	stress	and	strain	tensor	at	each	grid	point
• 9	FFTs	of	size	N3

Grid	size:	323 to	10243
Memory	requirement	 increases	32.4k times!

Solution:
Decompose	material	into	irregular	domains,	which	are	the	
grains
• memory	requirement	is	reduced	significantly
• all-all	communication	can	be	eliminated

CPU

GPU GPU GPU GPU

process
grain	1	

process
grain	2	

process
grain	3	

process
grain	4	

Nearest	neighbor
communication	
only

Each	grain	(domain)	is	assigned	to	a	GPU.	For	small	grains,	
single	GPU	can	process	multiple	grains.	Distribution	will	be	
done	using	appropriate	load	balance.	

The next section describes more details of MSC-Basic Scheme
and MSC-Alternate Scheme. This is followed by some proof-of-
concept results.

2 METHOD
In this section, we describe both simulation methods in more detail.
First, we include a short description of tensor notation.

2.1 Tensors and Tensor Notation
Einstein notation is used to represent tensor components and op-
erations. Subscripts denote the tensor components. Eg., Ai j refers
to component (i, j) of the rank-2 tensor A. Repetition of indices
implies a summation over those particular indices. An important
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (���) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
procedure I���������
�0 E, � 0

mn (x) Cmnkl (x) : �0kl (x)

while es > etol do
�̂ imn (���) = FFT(� imn (x))
Check convergence
��̂i+1kl (���) = �̂klmn (���) : �̂ imn (���)

Update strain: �̂i+1kl (���) �̂ikl (���) � ��̂i+1kl (���)

�i+1kl (x) IFFT(�̂i+1kl (���))

Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for
various microstructures in a copper dataset. Table 2 shows error for

Algorithm 2 MSC Alternate Scheme
procedure I���������
�0 E, � 0

mn (x) Cmnkl (x) : �0kl (x)

while es > etol do
for each grain j 2 G do

(�̂ imn (���))j = FFT((� imn (x))j)
Check convergence
Update strain: �(�̂i+1kl (���))j = �̂klmn (���) : (�̂ imn (���))j

�(�i+1kl (x))j = IFFT(�(�̂i+1kl (x))j)

Gather step: ��i+1kl =
P
j
�(�i+1kl)j

Update strain: �i+1kl (x) �ikl (x) � ��i+1kl (x)
Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

Iter.
#

% error in stress % error in strain

323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.97 % 0.066 % 0.18 % 1.02 % 0.096 % 0.13 %

Stress Component
��� 11 ��� 22 ��� 33

Approx.
Error %

0.099 0.1039 0.0599

3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation to
�elds in grain interior have been considered but the next phase will
also carefully look at the grain boundary interactions, which must
happen at full resolution. Future work also includes a GPU imple-
mentation that achieves savings in communication by transmitting
models for �elds in grains rather than the full tensor �elds.

2

Acknowledgements

References

Figure 1: Proposed method
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (���) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: �̂ imn (���) FFT(� imn (x))
4: Check convergence
5: ��̂i+1kl (���) �̂klmn (���) : �̂ imn (���)

6: Update strain: �̂i+1kl (���) �̂ikl (���) � ��̂i+1kl (���)

7: �i+1kl (x) IFFT(�̂i+1kl (���))

8: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for

Algorithm 2 MSC Alternate Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: for each grain j 2 G do
4: (�̂ imn (���))j FFT((� imn (x))j)
5: Check convergence
6: Update strain: �(�̂i+1kl (���))j �̂klmn (���) : (�̂ imn (���))j

7: �(�i+1kl (x))j IFFT(�(�̂i+1kl (x))j)

8: Gather step: ��i+1kl
P
j
�(�i+1kl)j

9: Update strain: �i+1kl (x) �ikl (x) � ��i+1kl (x)
10: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

various microstructures in a copper dataset. Table 2 shows error for
3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

Iter.
#

% error in stress % error in strain
323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.972 % 0.066 % 0.180 % 1.020 % 0.096 % 0.130 %

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
phase will carefully look at the grain boundary interactions, which
must happen at full resolution. Future work also includes a GPU
implementation that achieves savings in communication by trans-
mitting models for �elds in grains in place of full tensor �elds.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Anthony Rollett, Dr Vahid
Tari and the sta� at Pittsburgh Supercomputing Center for all their
assistance and collaboration with this project.

2
Figure 1: Proposed method

tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (���) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: �̂ imn (���) FFT(� imn (x))
4: Check convergence
5: ��̂i+1kl (���) �̂klmn (���) : �̂ imn (���)

6: Update strain: �̂i+1kl (���) �̂ikl (���) � ��̂i+1kl (���)

7: �i+1kl (x) IFFT(�̂i+1kl (���))

8: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for

Algorithm 2 MSC Alternate Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: for each grain j 2 G do
4: (�̂ imn (���))j FFT((� imn (x))j)
5: Check convergence
6: Update strain: �(�̂i+1kl (���))j �̂klmn (���) : (�̂ imn (���))j

7: �(�i+1kl (x))j IFFT(�(�̂i+1kl (x))j)

8: Gather step: ��i+1kl
P
j
�(�i+1kl)j

9: Update strain: �i+1kl (x) �ikl (x) � ��i+1kl (x)
10: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

various microstructures in a copper dataset. Table 2 shows error for
3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

Iter.
#

% error in stress % error in strain
323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.972 % 0.066 % 0.180 % 1.020 % 0.096 % 0.130 %

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
phase will carefully look at the grain boundary interactions, which
must happen at full resolution. Future work also includes a GPU
implementation that achieves savings in communication by trans-
mitting models for �elds in grains in place of full tensor �elds.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Anthony Rollett, Dr Vahid
Tari and the sta� at Pittsburgh Supercomputing Center for all their
assistance and collaboration with this project.

2

Figure 1: Proposed method
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (���) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: �̂ imn (���) FFT(� imn (x))
4: Check convergence
5: ��̂i+1kl (���) �̂klmn (���) : �̂ imn (���)

6: Update strain: �̂i+1kl (���) �̂ikl (���) � ��̂i+1kl (���)

7: �i+1kl (x) IFFT(�̂i+1kl (���))

8: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for

Algorithm 2 MSC Alternate Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: for each grain j 2 G do
4: (�̂ imn (���))j FFT((� imn (x))j)
5: Check convergence
6: Update strain: �(�̂i+1kl (���))j �̂klmn (���) : (�̂ imn (���))j

7: �(�i+1kl (x))j IFFT(�(�̂i+1kl (x))j)

8: Gather step: ��i+1kl
P
j
�(�i+1kl)j

9: Update strain: �i+1kl (x) �ikl (x) � ��i+1kl (x)
10: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

various microstructures in a copper dataset. Table 2 shows error for
3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

Iter.
#

% error in stress % error in strain
323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.972 % 0.066 % 0.180 % 1.020 % 0.096 % 0.130 %

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
phase will carefully look at the grain boundary interactions, which
must happen at full resolution. Future work also includes a GPU
implementation that achieves savings in communication by trans-
mitting models for �elds in grains in place of full tensor �elds.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Anthony Rollett, Dr Vahid
Tari and the sta� at Pittsburgh Supercomputing Center for all their
assistance and collaboration with this project.

2size

3x3x3x3	stiffness	tensor

stress strain

3D	Hooke’s	law

C0
ijkluk,lj(x) + ⌧ij,j(x) = 0 (1)

Modeling Dataset I
• Stress in fibers

– Location (center) of fiber is known
– Radius of fiber is known

Identify smooth
region

Compactly
describe its

shape
Find model for

region

Smooth regions:
circular

Circle shape params:
radius a, (xc,yc)

Suggests
Polynomial

model

40

Modeling Dataset II
• Irregular grains

– Consider example of a single grain

Smooth regions:
not regular, so pack

rectangles

Rectangle shape
params: (xr,yr), w, h

1. Polynomial model,
2. Spline model

41

Identify smooth
region

Compactly
describe its

shape
Find model for

region

Preliminary	experiment:	Cropped	microstructure	and	
model	in	2D	plane

Identify	regular	shapes	for	compact	representation

Ideal Model Characteristics

�

Compactness
Low High

Ap
pr

ox
. e

rro
r

Lo
w

H
ig

h

Ideal	model	characteristics

Compression

zk = a0 + a1xi + a2x
2
i + a3yj + a4y

2
j + a5xiyj

i = 0, 1 . . . , (N � 1)
j = 0, 1 . . . , (M � 1)
k = 0, 1 . . . , (NM � 1)

Z = X↵+ e

X=

0

BBB@

1 x0 x

2
0 y0 y

2
0 x0 y0

1 x0 x

2
0 y1 y

2
1 x0 y1

...
...

...
...

...
...

...
1 xN x

2
N yM y

2
M xN yM

1

CCCA

↵ =

0

BBBBBB@

a0

a1

a2

a3

a4

a5

1

CCCCCCA

Model	type	I:	Polynomial

Model	type	II:	Spline
• Piecewise	polynomial
• Cubic	spline

Runs	FORTRAN	code
Writes	data	in	each	iteration

Processes	data
in	MATLAB

Writes	output

Next	iteration

Data	with
approximations

Computational	aspects:	FORTRAN	interfaced	with	MATLAB	
or	C

Results: Dataset II (single grain)

46

Images:
http://www.ethlife.ethz.ch/archive_articles/120223_Simulation_subduktion_su/1202XX_einseitigeSubduktion_L1-hires.jpeg
http://public.lanl.gov/lebenso/2012-IJP-RLetal-EVPFFT.pdf
https://www.researchgate.net/profile/Tamas_Csanadi/publication/311421026/figure/fig2/AS:489562741972997@1493732261970/	Effect-of-load-and-crystal-orientation-on-crack-
formation-during-scratch-test-b.ppm

MSC-Basic	Algorithm	is	an	FFT-based	algorithm	[1]	for	
calculating	local	stress	and	strain	in	composite	materials.

The	algorithm		solves	a	PDE:

It	requires	large	amounts	of	memory	and	has	a	high	
communication	overhead	which	becomes	a	bottleneck.	

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Turner et al. Integrating Materials and Manufacturing Innovation ������ ��� Page 6 of 9

Approach	overview

Stress	in	crystals
Boundaries	are	critical	
regions		of	 interest

Motivation

MSC-Basic	Scheme	requires	very	large	memory	as	
problem	size	scales

0

500

1000

1500

2000

2500

32 64 128 256 512 1024

Memory	usage	(in	Gb)	for	different	grid	sizes

I.	MSC-Alternate	Scheme

Original	method	
by		Moulinec and	Suquet Our	method

Large	Scale	FFT-Based	Stress-Strain	Simulations	with	Irregular	Domain	Decomposition	
Anuva Kulkarni,	Franz	Franchetti (Advisor),	Jelena Kovačević (Advisor)

II.	Data	models	 Result	highlights
Initialize

Convergence	test

Distribute	data	to	
GPUs

Compute	strain	
field	update	

Gather	data	from	
GPUs

Get	full	stress	
and	strain	field

CPU	action

Iteration
Communication
action

Communication
reduced	by	modeling

MSC-Alternate
Scheme

Proposed	Method

Communication
reduced	by	modeling

More	on	the	nature	of	Green’s	functions:	
We	observe	that	99%	energy	of	the	space-domain	
Green’s	function	is	concentrated	at	central	peak,	in	
a	n3 volume,	n<<N.	Hence,	Green’s	function	can	be	
truncated	before	convolution.	
An	Ewald-type	method	may	be	employed	to	avoid	
the	1%	error,	since	errors	accumulate	in	the	
iterative	PDE	solver.

Right:
N	=	512
Slice	of	3D	
component	of	
space-domain
Green’s	function

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Turner et al. Integrating Materials and Manufacturing Innovation ������ ��� Page 6 of 9

Example	datasets:	regular	and	irregular	shaped	grains

Stress	and	strain	fields	calculated	by	MSC	– Basic	Scheme	
and	MSC– Alternate	Scheme	are	in	agreement

Data	compression	used	to	model	grain	interior	can	
reduce	communication.																						

Next	Phase
• Algorithm	development:	

o Energy-preserving	truncation	of	the	Green’s	
operator	in	space	domain

o Grain	boundary	interactions
• Performance	test:	GPU	implementation	and	quantify	

savings	in	communication

[1]		H.	Moulinec and	P.	Suquet.	1998.	A	numerical	method	for	computing	the	over- all	
response	of	nonlinear	composites	with	complex	microstructure.	Computer	methods	
in	applied	mechanics	and	engineering	157,	1-2	(1998),	69–94.	
[2]	R.	A.	Lebensohn.	2001.	N-site	modeling	of	a	3D	viscoplastic polycrystal using	fast	
Fourier	transform.	Acta Materialia 49,	14	(2001),	2723–2737.	

The	authors	would	like	to	thank	Dr.	Anthony	Rollett,	Dr.	Vahid Tari	and	the	staff	at	the	
Pittsburgh	Supercomputing	Center	for	all	their	assistance	and	collaboration	with	this	
project.

Initialize

Convergence	test

Distribute	data	to	
GPUs

Compute	strain	
field	update	

Gather	data	from	
GPUs

Get	full	stress	
and	strain	field

CPU	action

Iteration
Communication
action

Model	
parameters

Full	data	
field

compress

Compress	data	
before	
communication

Approx.
models
for	

smooth	
regions

Dataset	1 Dataset	2
Dataset	1

Dataset	2

Programmed	in	FORTRAN, difficult	to	run	on	accelerators	
due	to	memory	requirement.	

Increasing	grid	resolution	is	desirable.	However,	larger	
problem	sizes	must	be	run	with	parallelized	code. This	
requires	large	parallel	FFT	computations	which	means	
high	memory	usage	and	all-all	communication.

Problem	scale:
• 3x3	stress	and	strain	tensor	at	each	grid	point
• 9	FFTs	of	size	N3

Grid	size:	323 to	10243
Memory	requirement	
increases	32.4k times!

Solution:
Decompose	material	into	irregular	domains,	which	are	
the	grains
• memory	requirement	is	reduced	significantly
• all-all	communication	can	be	eliminated

CPU

GPU GPU GPU GPU

process
grain	1	

process
grain	2	

process
grain	3	

process
grain	4	

Nearest	neighbor
communication	
only

Each	grain	(domain)	is	assigned	to	a	GPU.	For	small	
grains,	single	GPU	can	process	multiple	grains.	
Distribution	will	be	done	using	appropriate	load	balance.	

The next section describes more details of MSC-Basic Scheme
and MSC-Alternate Scheme. This is followed by some proof-of-
concept results.

2 METHOD
In this section, we describe both simulation methods in more detail.
First, we include a short description of tensor notation.

2.1 Tensors and Tensor Notation
Einstein notation is used to represent tensor components and op-
erations. Subscripts denote the tensor components. Eg., Ai j refers
to component (i, j) of the rank-2 tensor A. Repetition of indices
implies a summation over those particular indices. An important
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (���) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
procedure I���������
�0 E, � 0

mn (x) Cmnkl (x) : �0kl (x)

while es > etol do
�̂ imn (���) = FFT(� imn (x))
Check convergence
��̂i+1kl (���) = �̂klmn (���) : �̂ imn (���)

Update strain: �̂i+1kl (���) �̂ikl (���) � ��̂i+1kl (���)

�i+1kl (x) IFFT(�̂i+1kl (���))

Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for
various microstructures in a copper dataset. Table 2 shows error for

Algorithm 2 MSC Alternate Scheme
procedure I���������
�0 E, � 0

mn (x) Cmnkl (x) : �0kl (x)

while es > etol do
for each grain j 2 G do

(�̂ imn (���))j = FFT((� imn (x))j)
Check convergence
Update strain: �(�̂i+1kl (���))j = �̂klmn (���) : (�̂ imn (���))j

�(�i+1kl (x))j = IFFT(�(�̂i+1kl (x))j)

Gather step: ��i+1kl =
P
j
�(�i+1kl)j

Update strain: �i+1kl (x) �ikl (x) � ��i+1kl (x)
Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

Iter.
#

% error in stress % error in strain

323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.97 % 0.066 % 0.18 % 1.02 % 0.096 % 0.13 %

Stress Component
��� 11 ��� 22 ��� 33

Approx.
Error %

0.099 0.1039 0.0599

3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation to
�elds in grain interior have been considered but the next phase will
also carefully look at the grain boundary interactions, which must
happen at full resolution. Future work also includes a GPU imple-
mentation that achieves savings in communication by transmitting
models for �elds in grains rather than the full tensor �elds.

2

Acknowledgements

References

Figure 1: Proposed method
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (���) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: �̂ imn (���) FFT(� imn (x))
4: Check convergence
5: ��̂i+1kl (���) �̂klmn (���) : �̂ imn (���)

6: Update strain: �̂i+1kl (���) �̂ikl (���) � ��̂i+1kl (���)

7: �i+1kl (x) IFFT(�̂i+1kl (���))

8: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for

Algorithm 2 MSC Alternate Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: for each grain j 2 G do
4: (�̂ imn (���))j FFT((� imn (x))j)
5: Check convergence
6: Update strain: �(�̂i+1kl (���))j �̂klmn (���) : (�̂ imn (���))j

7: �(�i+1kl (x))j IFFT(�(�̂i+1kl (x))j)

8: Gather step: ��i+1kl
P
j
�(�i+1kl)j

9: Update strain: �i+1kl (x) �ikl (x) � ��i+1kl (x)
10: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

various microstructures in a copper dataset. Table 2 shows error for
3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

Iter.
#

% error in stress % error in strain
323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.972 % 0.066 % 0.180 % 1.020 % 0.096 % 0.130 %

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
phase will carefully look at the grain boundary interactions, which
must happen at full resolution. Future work also includes a GPU
implementation that achieves savings in communication by trans-
mitting models for �elds in grains in place of full tensor �elds.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Anthony Rollett, Dr Vahid
Tari and the sta� at Pittsburgh Supercomputing Center for all their
assistance and collaboration with this project.

2

Figure 1: Proposed method
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (���) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: �̂ imn (���) FFT(� imn (x))
4: Check convergence
5: ��̂i+1kl (���) �̂klmn (���) : �̂ imn (���)

6: Update strain: �̂i+1kl (���) �̂ikl (���) � ��̂i+1kl (���)

7: �i+1kl (x) IFFT(�̂i+1kl (���))

8: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for

Algorithm 2 MSC Alternate Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: for each grain j 2 G do
4: (�̂ imn (���))j FFT((� imn (x))j)
5: Check convergence
6: Update strain: �(�̂i+1kl (���))j �̂klmn (���) : (�̂ imn (���))j

7: �(�i+1kl (x))j IFFT(�(�̂i+1kl (x))j)

8: Gather step: ��i+1kl
P
j
�(�i+1kl)j

9: Update strain: �i+1kl (x) �ikl (x) � ��i+1kl (x)
10: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

various microstructures in a copper dataset. Table 2 shows error for
3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

Iter.
#

% error in stress % error in strain
323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.972 % 0.066 % 0.180 % 1.020 % 0.096 % 0.130 %

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
phase will carefully look at the grain boundary interactions, which
must happen at full resolution. Future work also includes a GPU
implementation that achieves savings in communication by trans-
mitting models for �elds in grains in place of full tensor �elds.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Anthony Rollett, Dr Vahid
Tari and the sta� at Pittsburgh Supercomputing Center for all their
assistance and collaboration with this project.

2

Figure 1: Proposed method
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (���) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: �̂ imn (���) FFT(� imn (x))
4: Check convergence
5: ��̂i+1kl (���) �̂klmn (���) : �̂ imn (���)

6: Update strain: �̂i+1kl (���) �̂ikl (���) � ��̂i+1kl (���)

7: �i+1kl (x) IFFT(�̂i+1kl (���))

8: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for

Algorithm 2 MSC Alternate Scheme
1: Initialize:

�0 E,
� 0
mn (x) Cmnkl (x) : �0kl (x)

2: while es > etol do
3: for each grain j 2 G do
4: (�̂ imn (���))j FFT((� imn (x))j)
5: Check convergence
6: Update strain: �(�̂i+1kl (���))j �̂klmn (���) : (�̂ imn (���))j

7: �(�i+1kl (x))j IFFT(�(�̂i+1kl (x))j)

8: Gather step: ��i+1kl
P
j
�(�i+1kl)j

9: Update strain: �i+1kl (x) �ikl (x) � ��i+1kl (x)
10: Update stress: � i+1mn (x) Cmnkl (x) : �i+1kl (x)

various microstructures in a copper dataset. Table 2 shows error for
3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

Iter.
#

% error in stress % error in strain
323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.972 % 0.066 % 0.180 % 1.020 % 0.096 % 0.130 %

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
phase will carefully look at the grain boundary interactions, which
must happen at full resolution. Future work also includes a GPU
implementation that achieves savings in communication by trans-
mitting models for �elds in grains in place of full tensor �elds.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Anthony Rollett, Dr Vahid
Tari and the sta� at Pittsburgh Supercomputing Center for all their
assistance and collaboration with this project.

2size

3x3x3x3	stiffness	tensor

stress strain

3D	Hooke’s	law

C0
ijkluk,lj(x) + ⌧ij,j(x) = 0 (1)

Modeling Dataset I
• Stress in fibers

– Location (center) of fiber is known
– Radius of fiber is known

Identify smooth
region

Compactly
describe its

shape
Find model for

region

Smooth regions:
circular

Circle shape params:
radius a, (xc,yc)

Suggests
Polynomial

model

40

Modeling Dataset II
• Irregular grains

– Consider example of a single grain

Smooth regions:
not regular, so pack

rectangles

Rectangle shape
params: (xr,yr), w, h

1. Polynomial model,
2. Spline model

41

Identify smooth
region

Compactly
describe its

shape
Find model for

region

Preliminary	experiment:	Cropped	microstructure	and	
model	in	2D	plane

Identify	regular	shapes	for	compact	representation

Micro-
structure

Stress

Ideal Model Characteristics

�

Compactness
Low High

Ap
pr

ox
. e

rro
r

Lo
w

H
ig

h

Ideal	model	characteristics

Compression

zk = a0 + a1xi + a2x
2
i + a3yj + a4y

2
j + a5xiyj

i = 0, 1 . . . , (N � 1)
j = 0, 1 . . . , (M � 1)
k = 0, 1 . . . , (NM � 1)

Z = X↵+ e

X=

0

BBB@

1 x0 x

2
0 y0 y

2
0 x0 y0

1 x0 x

2
0 y1 y

2
1 x0 y1

...
...

...
...

...
...

...
1 xN x

2
N yM y

2
M xN yM

1

CCCA

↵ =

0

BBBBBB@

a0

a1

a2

a3

a4

a5

1

CCCCCCA

Model	type	I:	Polynomial

Model	type	II:	Spline
• Piecewise	polynomial
• Cubic	spline

Results: Dataset I

Stress Component

Percent
Approx.
error

!11 !22 !33

0.099% 0.1039% 0.0599%

C =

(Area of Region)

(n
param

n
r

+ n
ex

)

= 4.65

Model: Degree 2 Polynomial

Polynomial model of degree 2 is a good approximation for fiber
interior, with compression ratio C = 4.65

45

Compression ratio

Results: Dataset I

Stress Component

Percent
Approx.
error

!11 !22 !33

0.099% 0.1039% 0.0599%

C =

(Area of Region)

(n
param

n
r

+ n
ex

)

= 4.65

Model: Degree 2 Polynomial

Polynomial model of degree 2 is a good approximation for fiber
interior, with compression ratio C = 4.65

45

Compression ratio

Runs	FORTRAN	code
Writes	data	in	each	iteration

Processes	data
in	MATLAB

Writes	output

Next	iteration

Data	with
approximations

Computational	aspects:	
FORTRAN	
interfaced	with
MATLAB	or	C

Results: Dataset II (single grain)

46

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1 5 9 13 17 21 25

Convergence	of	Stress
Log	Error	in	Stress	field	vs.	Iteration	number

n=0	(MSC	Basic)

n=7

n=10

n=15

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1 5 9 13 17 21 25

Convergence	of	Strain
Log	Error	in	Strain	field	vs.	Iteration	number

n=0	(MSC	Basic)

n=7

n=10

n=15

Repetition of indices implies a summation over those par-
ticular indices. An important tensor operation is the con-
traction of indices (denoted by ‘:’). E.g., Cmnk`:Dmn =P
m

P
n
Cmnk`Dmn = Ek` and yields a rank-2 tensor.

MSC Basic Scheme. The MSC Basic Scheme is a fixed-
point iterative numerical method that computes local stress and
strain fields using Hooke’s law. In this FFT-based PDE solver,
the microstructure (arrangement of grains in the composite
material) is discretized onto a regular grid and a PDE with
periodic boundary conditions is formulated using the stress-
strain constitutive relation and equilibrium conditions. The
MSC Basic Scheme is enumerated as follows. ✏(x) and
�(x) are strain and stress tensor fields at 3-D grid point x

respectively. Cmnkl(x) is the rank-4 stiffness tensor. E is
initial average strain. �̂mnk`(⇠⇠⇠) is the Green’s operator in
Fourier space at frequency point ⇠⇠⇠. The convergence error is
es and tolerance error is e

tol

. �✏k` is the computed pertur-
bation in component (k, `) of the strain tensor. Superscripts
indicate iteration number. The iterative scheme continues till
convergence is reached. For more details, refer to [4] and
[5]. This is a single time step simulation. An outer loop also
simulates viscoplastic deformation over multiple time steps,
however that is not discussed here.

Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0

mn(x) Cmnk`(x) : ✏0k`(x)

While es > e
tol

, proceed with following steps.
1) Compute FFT of stress field.

�̂i
mn(⇠⇠⇠) FFT(�i

mn(x))

2) Check convergence
3) Fourier domain convolution with Green’s function.

�✏̂i+1

k` (⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
mn(⇠⇠⇠)

4) Update strain in Fourier domain.
✏̂i+1

k` (⇠⇠⇠) ✏̂ik`(⇠⇠⇠)��✏̂i+1

k` (⇠⇠⇠)

5) Inverse transform updated strain field.
✏i+1

k` (x) iFFT(✏̂i+1

k` (⇠⇠⇠))

6) Update stress field.
�i+1

mn (x) Cmnk`(x) : ✏
i+1

k` (x)

The convolution with Green’s function requires computation
of 3D FFTs of tensor components of the stress field, hence the
need for extensive resources for large grids. Other quantities
such as crystallographic angles and stiffness tensors are stored
and updated at each grid point. Hence, a simulation size of
1, 024 ⇥ 1, 024 ⇥ 1, 024 is also a large-scale dataset. The
MSC Basic Scheme is implemented in Fortran serial and MPI
parallel version with FFTW [6].

III. MSC ALTERNATE SCHEME

This section briefly describes the proposed algorithm, de-
signed to be implemented on a CPU-GPU hardware setup, and
discusses its highlights, namely irregular domain decomposi-
tion, lossy compression and domain-local FFTs.

Overview. Initialization of the problem is performed on
the CPU side. In the 3-D composite volume, we observe

that grain interiors have smooth stress and strain fields that
are compressible. Hence, an irregular domain decomposition
method is used to decompose the volume into smaller domains
(grains) with smooth fields. The smooth fields are compressed
to data models that are communicated to J GPUs, thus
reducing data movement and ensuring that GPU memory is
sufficient to process the grain volume. Fixed-point iterations
are performed on the GPU side. In each GPU-based iteration,
domain-local FFTs are used for convolution of the stress
field of a single grain �

grain

(x) with the Green’s function
in the Fourier domain. We use the term domain-local to
refer to FFT of the signal on each grain. The local con-
volution result (�✏

local

(x))j (where j refers to the GPU
ID), is compressed using adaptive subsampling. Then, GPUs
communicate between each other to transfer the compressed
(�✏

local

(x))j . The effect of convolution is summarized by the
�✏

total

(x) field, which is the sum over all local convolutions
(�✏

local

(x))j . Once the effect of convolution from other grains
has been taken into account, corresponding strain �✏

grain

(x)
is extracted from �✏

total

(x) by each GPU using windows.
Now stress and strain fields can be updated locally for the
grain. This makes the GPU part of the code parallel for grain
volumes and stress update for the grain is a self-contained
problem. The algorithm flow is summarized in Figure 2.

Communication	
to	GPUs

Lossy
Compression

Irregular	Domain	
Decomposition

Reconstruct	grain	
field

Local	FFT	+	
Convolution

Communication	
to	other	GPUs

IFFT	+	Modeling

Stress	and	strain	
update

Convergence	test

Initialize

CPU

GPU
Offload

Synchronize

Fig. 2. CPU and GPU tasks for proposed MSC Alternate Scheme. Boxes
highlighted in red are discussed in section III.

CPU Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0

mn(x) Cmnk`(x) : ✏0k`(x)

1) Decompose 3-D volume into grains (irregular domains)
using windows.

2) Apply lossy compression to stress, strain fields in each
grain.

3) Communicate data models to GPUs.
The GPU-side MSC Alternate Scheme for iteration i is as

follows.
GPU Algorithm. Reconstruct stress and strain fields for

grain. While es > e
tol

, proceed with following steps.
1) Compute domain-local FFT of stress field for grain.

�̂i
grain,mn(⇠⇠⇠) Domain-local FFT(�i

grain,mn(x))

2) Compute Fourier domain convolution.

�✏̂i+1

local,k`(⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
grain,mn(⇠⇠⇠)

3) Inverse transform to get updated strain �✏
local

.
�✏i+1

local,k`(x) iFFT
�
�✏̂i+1

local,k`(⇠⇠⇠)
�

4) Compress sub-sampled field around grain. Communicate
to other GPUs.

5) Obtain summarized convolution result �✏
total

by sum-
ming �✏

local

from other GPUs.

�✏i+1

total

(x) =
JP

j=1

�
�✏i+1

local

(x)
�
j

6) Obtain �✏
grain

in local grain volume from summarized
convolution results using corresponding window W (x).

�✏i+1

grain

(x) = �✏i+1

total

(x) · W (x)

7) Update strain.
✏i+1

grain,k`(⇠⇠⇠) ✏i
grain,k`(⇠⇠⇠)��✏i+1

grain,k`(⇠⇠⇠)

8) Update stress.
�i+1

grain,mn(x) Cmnk`(x) : ✏
i+1

grain,k`(x)

9) Check convergence.
Irregular Domain Decompositions. The large 3-D volume

is decomposed into smaller volumes (grain interiors) using
windows. Number of voxels to be excluded at the grain
boundary must be specified depending on the requirements
of the simulation. For the test case discussed in this paper, we
use a dataset with cubic grains. The cubical shape makes it
easier to test the prototype with simple tapering windowing
techniques such as trapezium or Tukey windows.

Datasets with irregular grains present a challenge in descrip-
tion of smooth regions because they do not have a compact
representation. More complicated pre-processing is used in
such cases. For e.g., a heuristic packing algorithm is used
to pack the irregular shape with compressible regular shapes
(such as rectangles).

Lossy Compression. Lossy compression methods can lead
to higher compression as compared to lossless methods [7],
[8], [9]. A number of lossy compression techniques are being
increasingly used to deal with the problem of storing expo-
nentially growing scientific data [10], [7]. One such scheme is
ISABELA [11], which uses sorting and B-spline fitting [12]
to compress random, noisy data. However, there is a tradeoff
between compression ratio and error because indices of the
sorted data have a storage requirement. In our case, we observe
that grain interiors have smooth stress and strain fields. Hence,
there is no need for sorting data. The stress field in each XY-
plane of the windowed grain volume is modeled using cubic
B-splines, which gives high compression ratios.

Domain-local FFTs. For large grids, GPU memory is a
limiting factor in computing Fourier domain convolution of the
N

1

⇥N
2

⇥N
3

stress signal with Green’s function. However,
by processing each grain separately on the GPU and using
adaptive downsampling, we can compute the full convolution
without storing entire large 3-D signals.

FFT of the sub-volume is computed pencil-wise, one di-
mension at a time. Pencils which are all zeros can be ig-
nored. Transformation in the X-dimension gives a beam of
N

1

⇥ k
2

⇥ k
3

non-zeros. By transforming in Y dimension,

we get a slab of N
1

⇥N
2

⇥ k
3

non-zeros. This is illustrated
in Figure 4. In the Z-dimension, we transform one pencil
at a time. Then, element-wise convolution is performed with
Green’s function, which is computed at required frequency
points using the closed form in [4]. The pencil is immediately
inverse transformed so that N

1

⇥N
2

⇥N
3

grid does not need
to be stored. Since the Green’s function is rapidly decaying in
space domain, convolution of the two signals results in a low-
magnitude and low-varying field in the volume surrounding
the grain. This important observation allows us to develop an
adaptive downsampling scheme to compress the convolution
result and further reduce memory required. Low-resolution
sampling is used in the low-varying part and sampling rate
is higher around grain boundary. This is illustrated for a 1-D
example in Figure 3. Similarly in 3-D, downsampling in the
areas around the k

1

⇥k
2

⇥k
3

sub-volume yields a compressed
model of the convolution result in that region.

Green’s	function

�
Green’s
function Different

sampling
rates

Fig. 3. Adaptive downsampling scheme to reduce memory for storage of
convolution result.

Low	magnitude
field

X	dimension	FFT Y dimension	FFT Z	dimension	FFT
(pencil-wise)

Z	dimension	iFFT
(pencil-wise)

Green’s		function	
pencil

Convolution
result

X	dimension	iFFT Y dimension	iFFT

Fig. 4. Illustration of convolution of isolated grain using domain-local FFT.
The .⇤ indicates element-wise multiplication.

IV. RESULTS AND DISCUSSION

We developed a MATLAB-Fortran prototype workflow of
the proposed method prior to GPU implementation. This sec-
tion describes results and analysis for the prototype. For proof-
of-concept results, a simple microstructure test dataset with
two types of grain orientations was created using MATLAB
for various grid sizes. Grains in each grid of size N3 are 8
cubes of

�
N
2

�
3 points arranged in a periodic lattice. We also

demonstrate results on grids of size N2 ⇥ 8 with 4 grains
of size

�
N
2

�
2 ⇥ 8 points arranged in a periodic lattice. These

microstructures simulate thin composite sheets.
Lossy Compression. Table IV shows results for two dif-

ferent values of grain boundary width (GBW), or the number
of voxels excluded from lossy compression at the boundary.
Reconstruction error (RE) is computed using Frobenius norm
and compression ratio (CR) with respect to original memory

Domain	local	FFT:	Performed	on	GPU	for	each	domain.	
Platform	used	is	MATLAB-GPU	interface,	using	NVIDIA	
Quadro K2200.

t0 t1 · · · tN+1

Bi,j+1(x) = ↵i,j+1(x)Bi,j(x) + [1� ↵i+1,j+1(x)]Bi+1,j(x)

↵i,j(x) =

8
<

:

x� ti

ti+j � ti
if ti+j 6= ti

0 otherwise

Adaptive	downsampling used	to	reduce	storage	of	
convolution	result

Irregular	grain	as	a	‘packing’	of	regular	shapes	(Eg.,	ellipsoids).	
Synthetic	dataset	generated	using	watershed	algorithm,	ellipsoid	
packing	and	Voronoi maps.	

MATLAB-GPU	Interface	to	obtain	proof-of-concept	results	
for	domain-local	FFTs.	700	x	700	x	700	size	convolution	
possible	grain-by-grain	with	irregular	domain	
decomposition	on	NVIDIA	Quadro K2200	with	640	CUDA	
cores	and	4	GB	GPU	memory.	

Lossy Compression	Reconstruction	Error	(RE)	and	
Compression	Ratio	(CR)	for	various	grain	sizes:

Proposed	Method Phase	I:	Successes Phase	II:	Plans

function in the Fourier domain. We use the term domain-local to
refer to the signal on each domain. The local convolution result is
compressed using adaptive subsampling. Then, GPUs communi-
cate between each other to transfer the compressed local results.
The e�ect of convolution is summarized by the sum over all local
convolutions. Once the e�ect of convolution from other grains has
been taken into account, stress and strain �elds can be updated
locally for the grain.

Irregular Domain Decomposition. The large 3-D volume is
decomposed into smaller volumes (grain interiors) using window-
ing techniques. For irregular grain shapes, pre-processing is used
before windowing. For e.g., a heuristic packing algorithm is used
to pack the irregular shape with compressible regular shapes (such
as rectangles).

Domain local FFT. For large grids, GPU memory is a limiting
factor in computing Fourier domain convolution of theN1⇥N2⇥N3
stress signal with Green’s function. However, by processing each
domain separately on the GPU and using adaptive downsampling,
we can compute the full convolution without storing entire large 3-
D signals, as shown in Fig. 1. Pencil-slab decomposition is combined
with pruning to avoid storage of the N1 ⇥ N2 ⇥ N3 signal.

Low	magnitude
field

X	dimension	FFT Y dimension	FFT Z	dimension	FFT
(pencil-wise)

Z	dimension	iFFT
(pencil-wise)

Green’s		function	
pencil

Convolution
result

X	dimension	iFFT Y dimension	iFFT

Figure 1: Illustration of convolution of isolated grain using
domain-local FFT. The .⇤ indicates element-wise multiplica-
tion.

Lossy Compression. Lossy compression methods can lead to
higher compression as compared to lossless methods [6],[1], [3].
A number of lossy compression techniques are being increasingly
used to deal with the problem of storing exponentially growing
scienti�c data [2], [6], [4]. In our case, the domains have smooth
stress �elds which are modeled using cubic B-splines.

4 RESULTS
For proof-of-concept results, a simple test dataset with regular
grains of size N ⇥ N ⇥M was created for various N and M . The
regular shape makes it easier to test the prototype with simple
windowing techniques. Lossy compression and convergence results
were obtained using MATLAB and a Fortran-MATLAB interface
on the Bridges system at the Pittsburgh Supercomputing Center
(PSC).

Lossy Compression. Table 1 shows results for spline-based
lossy compression for smooth grain �elds. Reconstruction error
(RE) is computed using Frobenius norm and compression ratio (CR)
with respect to original memory requirement is as shown. The
number of voxels excluded from lossy compression at the boundary

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1 5 9 13 17 21 25

Convergence	of	Stress
Log	Error	in	Stress	field	vs.	Iteration	number

n=0	(MSC	Basic)

n=7

n=10

n=15

Figure 2: Convergence in stress for problem size 1283.n refers
to number of iteration performed on GPUs.
is 4. This can be varied depending on desired resolution at grain
boundaries with a trade-o� in CR.

Grain 643 1283 1282 ⇥ 8 2562 ⇥ 8 5122 ⇥ 8
Size
RE 1.49% 1.11% 0.52 % 0.44% 0.41%
CR 2.48 8.01 5.47 13 28.69

Table 1: Reconstruction error and compression ratio for
lossy compression in various grain sizes.

Domain-local FFT. Our prototype MATLAB-GPU implementa-
tion of domain-local FFTs was tested on a system with Intel Xeon
E5-1650 64-bit CPU (3.50 GHz) and a NVIDIA Quadro K2200 with
640 CUDA cores and 4 GB GPU memory. For proof-of-concept re-
sults, we tested problem sizes up to 700⇥700⇥700with 32⇥32⇥32
grains. The convolution for the full 3-D volume does not �t on GPU
memory, however, using our method, we convolve one grain at a
time on the GPU and get the convolution result without having to
store the full 3D FFT.

To study approximation errors introduced by domain-local FFTs
and adaptive downsampling, we computed convolutions grain-by-
grain for various sizes in a MATLAB environment. Table 2 shows
error in convolution result for various grain sizes.

Grain 643 1283 1282 ⇥ 8 2562 ⇥ 8 5122 ⇥ 8
size

Error(%) 1.79 3.03 3.74 · 10�14 4.11 · 10�14 4.32 · 10�14

Table 2: Error in convolution by domain-local FFT method

Convergence. The plot in Fig. 2 shows the convergence of stress
�elds inMSC-Basic Scheme andMSCAlternate Scheme for di�erent
values of n in a simulation of size 128 ⇥ 128 ⇥ 128.

5 CONCLUSIONS & FUTUREWORK
The proposed MSC Alternate Scheme is a co-design of algorithm
and software for heterogeneous platforms. It enables scaling of
stress-strain simulations to large grids by overcoming high mem-
ory requirements and communication bottlenecks. The analysis
presented here is an important step towards future work on a
Fortran-GPU work�ow on NVIDIA Tesla K80 GPUs.

2

function in the Fourier domain. We use the term domain-local to
refer to the signal on each domain. The local convolution result is
compressed using adaptive subsampling. Then, GPUs communi-
cate between each other to transfer the compressed local results.
The e�ect of convolution is summarized by the sum over all local
convolutions. Once the e�ect of convolution from other grains has
been taken into account, stress and strain �elds can be updated
locally for the grain.

Irregular Domain Decomposition. The large 3-D volume is
decomposed into smaller volumes (grain interiors) using window-
ing techniques. For irregular grain shapes, pre-processing is used
before windowing. For e.g., a heuristic packing algorithm is used
to pack the irregular shape with compressible regular shapes (such
as rectangles).

Domain local FFT. For large grids, GPU memory is a limiting
factor in computing Fourier domain convolution of theN1⇥N2⇥N3
stress signal with Green’s function. However, by processing each
domain separately on the GPU and using adaptive downsampling,
we can compute the full convolution without storing entire large 3-
D signals, as shown in Fig. 1. Pencil-slab decomposition is combined
with pruning to avoid storage of the N1 ⇥ N2 ⇥ N3 signal.

Low	magnitude
field

X	dimension	FFT Y dimension	FFT Z	dimension	FFT
(pencil-wise)

Z	dimension	iFFT
(pencil-wise)

Green’s		function	
pencil

Convolution
result

X	dimension	iFFT Y dimension	iFFT

Figure 1: Illustration of convolution of isolated grain using
domain-local FFT. The .⇤ indicates element-wise multiplica-
tion.

Lossy Compression. Lossy compression methods can lead to
higher compression as compared to lossless methods [6],[1], [3].
A number of lossy compression techniques are being increasingly
used to deal with the problem of storing exponentially growing
scienti�c data [2], [6], [4]. In our case, the domains have smooth
stress �elds which are modeled using cubic B-splines.

4 RESULTS
For proof-of-concept results, a simple test dataset with regular
grains of size N ⇥ N ⇥M was created for various N and M . The
regular shape makes it easier to test the prototype with simple
windowing techniques. Lossy compression and convergence results
were obtained using MATLAB and a Fortran-MATLAB interface
on the Bridges system at the Pittsburgh Supercomputing Center
(PSC).

Lossy Compression. Table 1 shows results for spline-based
lossy compression for smooth grain �elds. Reconstruction error
(RE) is computed using Frobenius norm and compression ratio (CR)
with respect to original memory requirement is as shown. The
number of voxels excluded from lossy compression at the boundary

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1 5 9 13 17 21 25

Convergence	of	Stress
Log	Error	in	Stress	field	vs.	Iteration	number

n=0	(MSC	Basic)

n=7

n=10

n=15

Figure 2: Convergence in stress for problem size 1283.n refers
to number of iteration performed on GPUs.
is 4. This can be varied depending on desired resolution at grain
boundaries with a trade-o� in CR.

Grain 643 1283 1282 ⇥ 8 2562 ⇥ 8 5122 ⇥ 8
Size
RE 1.49% 1.11% 0.52 % 0.44% 0.41%
CR 2.48 8.01 5.47 13 28.69

Table 1: Reconstruction error and compression ratio for
lossy compression in various grain sizes.

Domain-local FFT. Our prototype MATLAB-GPU implementa-
tion of domain-local FFTs was tested on a system with Intel Xeon
E5-1650 64-bit CPU (3.50 GHz) and a NVIDIA Quadro K2200 with
640 CUDA cores and 4 GB GPU memory. For proof-of-concept re-
sults, we tested problem sizes up to 700⇥700⇥700with 32⇥32⇥32
grains. The convolution for the full 3-D volume does not �t on GPU
memory, however, using our method, we convolve one grain at a
time on the GPU and get the convolution result without having to
store the full 3D FFT.

To study approximation errors introduced by domain-local FFTs
and adaptive downsampling, we computed convolutions grain-by-
grain for various sizes in a MATLAB environment. Table 2 shows
error in convolution result for various grain sizes.

Grain 643 1283 1282 ⇥ 8 2562 ⇥ 8 5122 ⇥ 8
size

Error(%) 1.79 3.03 3.74 · 10�14 4.11 · 10�14 4.32 · 10�14

Table 2: Error in convolution by domain-local FFT method

Convergence. The plot in Fig. 2 shows the convergence of stress
�elds inMSC-Basic Scheme andMSCAlternate Scheme for di�erent
values of n in a simulation of size 128 ⇥ 128 ⇥ 128.

5 CONCLUSIONS & FUTUREWORK
The proposed MSC Alternate Scheme is a co-design of algorithm
and software for heterogeneous platforms. It enables scaling of
stress-strain simulations to large grids by overcoming high mem-
ory requirements and communication bottlenecks. The analysis
presented here is an important step towards future work on a
Fortran-GPU work�ow on NVIDIA Tesla K80 GPUs.

2

How	can	we	go	bigger?

Thrust	4:	Use	FFTX	[3],	a	new	framework	for	building	high	
performance	FFT-based	applications	on	exascale machines,	
for	domain-local	FFTs.	
FFTX	is	backwards	compatible	to	FFTW	and	has	a	SPIRAL-
based	back	end	for	advanced	performance	optimizations.

Distance	map
after	random

ellipsoid
packing

Watershed	algorithm	
gives	lines	for	
Voronoi diagram

