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 Challenges in current communication systems

 Difficult channel modeling in complex scenarios:

 Demand for effective and fast signal processing 

 Not adpat to communication environments dynamically

 Why deep learning?

 Without need for accurate channel models

 Distributed and parallel computing architectures 

 Adapt to communication environments dynamically

Motivation

Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, “Deep learning in physical layer communications,” submitted to IEEE

Commun. Mag., July 2018/ also at https://arxiv.org/abs/1807.11713.
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H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, “Model-driven deep learning for physical layer

communications,” submitted to IEEE Wireless Communications, Sept. 2018/ also at https://arxiv.org/abs/1809.06059.

2018.

T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities 

and challenges,” China Communications, vol. 14, no. 11, pp. 92-111, Nov. 2017.



 Data-Driven DL

 Using standard neural networks (DNN, RNN, CNN,…)

 Requiring little domain knowledge

 Unexplainable and unpredictable neural network

 Requiring a large amount of data

 Model-Driven DL

 Relying on  relatively accurate model

 Exploiting rich domain/expert knowledge in physical layer communications

 Explainable and predictable networks

 Easy to train with a small amount of data

Data-Driven or Model-Driven DL?
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H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, “Model-driven deep learning for

physical layer communications,” submitted to IEEE Wireless Communications, Sept. 2018/ also at

https://arxiv.org/abs/1809.06059. 2018.
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Block Structure or End-to-End?
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Block Structure 

End-to-End

T. O’ Shea and J. Hoydis, “An introduction to deep learning for the physical layer,”  IEEE Trans. on Cogn. 

Commun. Netw., vol. 3, no. 4, pp. 563–575, Dec. 2017.



Model-Driven Data-Driven

Future Physical Layer Communications
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 Challenges of data-driven method in communications

 Difficulties in network design and its interpretation

 Lack of understanding in its generation ability

 Require a large number of data

 Why model-driven deep learning?

 Design network topology with theoretical foundations

 Communication expert knowledge can be utilized

 Easy to train the network with a small amount of data

Motivation

H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, “Model-driven deep learning for

physical layer communications,” submitted to IEEE Wireless Communications, Sept. 2018/ also at

https://arxiv.org/abs/1809.06059. 2018.
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Components

 Model: based on domain knowledge, not required accurate

 Approach (Algorithm): based on the model

 Network: deep unfolding, using the algorithm as initialization, mimic 

conventional architecture
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 MIMO System:

y = Hx + n

 Goal: estimating x from received signal y and channel matrix H

 Conventional Detectors:

 Optimal detector: Maximum likelihood (ML) detector, high complexity 

 Linear detectors: ZF,LMMSE, low complexity but poor performance 

 Iterative detectors: AMP-based detection, EP-based detector, excellent 

performance, moderate complexity, performance degradation with ill-

conditioned channel matrix

 Motivation: deep learning to improve iterative detectors

MIMO Detection
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 Standard linear regression:

 Bayesian MMSE estimator:

 Decoupling principle:

 Eequivalent AWGN channel:

 MMSE estimator:

Orthogonal Approximate Message 
Passing (OAMP) algorithm

11J. Ma and L. Ping, “Orthogonal OAMP,” IEEE Access, vol. 5, no. 14, pp. 2020 – 2033, Jan. 2017.

With                               
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Orthogonal Approximate Message 
Passing (OAMP)-based detector

J. Ma and L. Ping, “Orthogonal OAMP,” IEEE Access, vol. 5, no. 14, pp. 2020 – 2033, Jan. 2017.

Equivalent AWGN channel:

Decouple the posterior probability

MMSE estimator:

Real-valued channel matrix
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 Architecture:

 Iterative Algorithms: :

 Tainable Parameters: Only two parameters               for each iteration! 

OAMP-Net for MIMO Detection
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Why OAMP-Net work ? 

 Bayesian-optimal performances

 State evolution analysis

 For large systems not for for small-size MIMO systems

 For Rayleigh not for correlated MIMO channel

 The effects of learned parameters

 Provides appropriate step sizes for the update of mean and variance in the 

MMSE denoiser

 Compensate for non-orthogonality of the two error(     , )
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 OAMP-Net outperforms the OAMP algorithm and LMMSE-TISTA network

 Number of trainable variables is 2 times of iteration number and independent of  the 

number of antennas N and M

Rayleigh MIMO Channel

D. Ito, S. Takabe, and T. Wadayama, “Trainable ISTA for sparse signal recovery,” arxiv preprint 

arXiv:1801.01978, 2018.



18

 OAMP-Net outperforms the OAMP algorithm when M=N=4

 Obtain more gains under correlated MIMO channel

Correlated MIMO Channel

QPSK
M=N=4
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 OAMP-Net outperforms the OAMP algorithm when M=N=4

High-order Modulation

16QAM
M=N=4
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 OAMP-Net outperforms the OAMP algorithm when M=N=4

High-order Modulation

64QAM
M=N=4
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 OAMP-Net for imperfect CSI

 Learn to damp

 Expectation propagation-based Network for MIMO detection:

 Low-resolution ADC architectures:

Future Works

J. C´espedes, P. M. Olmos, M. S´anchez-Fernandez, and F. P´erez-Cruz, “Expectation propagation 

detection for high-order high-dimensional MIMO systems,” IEEE Trans. Commun., vol. 62, no. 8, pp. 

2840-2849, Aug. 2014.

I. Santos and J. Murillo-Fuentes, “EP-based turbo detection for MIMO receivers and large-scale 

systems,” arxiv preprint arXiv:1805.05065, 2018.

H.-T. He, C.- K. Wen, and S. Jin, “Generalized expectation consistent signal recovery for nonlinear 

measurements,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 2333–2337.
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