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 Challenges in current communication systems

 Difficult channel modeling in complex scenarios:

 Demand for effective and fast signal processing 

 Not adpat to communication environments dynamically

 Why deep learning?

 Without need for accurate channel models

 Distributed and parallel computing architectures 

 Adapt to communication environments dynamically

Motivation

Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, “Deep learning in physical layer communications,” submitted to IEEE

Commun. Mag., July 2018/ also at https://arxiv.org/abs/1807.11713.
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H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, “Model-driven deep learning for physical layer

communications,” submitted to IEEE Wireless Communications, Sept. 2018/ also at https://arxiv.org/abs/1809.06059.

2018.

T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities 

and challenges,” China Communications, vol. 14, no. 11, pp. 92-111, Nov. 2017.



 Data-Driven DL

 Using standard neural networks (DNN, RNN, CNN,…)

 Requiring little domain knowledge

 Unexplainable and unpredictable neural network

 Requiring a large amount of data

 Model-Driven DL

 Relying on  relatively accurate model

 Exploiting rich domain/expert knowledge in physical layer communications

 Explainable and predictable networks

 Easy to train with a small amount of data

Data-Driven or Model-Driven DL?
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H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, “Model-driven deep learning for

physical layer communications,” submitted to IEEE Wireless Communications, Sept. 2018/ also at

https://arxiv.org/abs/1809.06059. 2018.
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Block Structure or End-to-End?
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T. O’ Shea and J. Hoydis, “An introduction to deep learning for the physical layer,”  IEEE Trans. on Cogn. 

Commun. Netw., vol. 3, no. 4, pp. 563–575, Dec. 2017.
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 Challenges of data-driven method in communications

 Difficulties in network design and its interpretation

 Lack of understanding in its generation ability

 Require a large number of data

 Why model-driven deep learning?

 Design network topology with theoretical foundations

 Communication expert knowledge can be utilized

 Easy to train the network with a small amount of data

Motivation

H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, “Model-driven deep learning for

physical layer communications,” submitted to IEEE Wireless Communications, Sept. 2018/ also at

https://arxiv.org/abs/1809.06059. 2018.
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Components

 Model: based on domain knowledge, not required accurate

 Approach (Algorithm): based on the model

 Network: deep unfolding, using the algorithm as initialization, mimic 

conventional architecture
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 MIMO System:

y = Hx + n

 Goal: estimating x from received signal y and channel matrix H

 Conventional Detectors:

 Optimal detector: Maximum likelihood (ML) detector, high complexity 

 Linear detectors: ZF,LMMSE, low complexity but poor performance 

 Iterative detectors: AMP-based detection, EP-based detector, excellent 

performance, moderate complexity, performance degradation with ill-

conditioned channel matrix

 Motivation: deep learning to improve iterative detectors

MIMO Detection
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 Standard linear regression:

 Bayesian MMSE estimator:

 Decoupling principle:

 Eequivalent AWGN channel:

 MMSE estimator:

Orthogonal Approximate Message 
Passing (OAMP) algorithm

11J. Ma and L. Ping, “Orthogonal OAMP,” IEEE Access, vol. 5, no. 14, pp. 2020 – 2033, Jan. 2017.

With                               
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Orthogonal Approximate Message 
Passing (OAMP)-based detector

J. Ma and L. Ping, “Orthogonal OAMP,” IEEE Access, vol. 5, no. 14, pp. 2020 – 2033, Jan. 2017.

Equivalent AWGN channel:

Decouple the posterior probability

MMSE estimator:

Real-valued channel matrix
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 Architecture:

 Iterative Algorithms: :

 Tainable Parameters: Only two parameters               for each iteration! 

OAMP-Net for MIMO Detection
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Why OAMP-Net work ? 

 Bayesian-optimal performances

 State evolution analysis

 For large systems not for for small-size MIMO systems

 For Rayleigh not for correlated MIMO channel

 The effects of learned parameters

 Provides appropriate step sizes for the update of mean and variance in the 

MMSE denoiser

 Compensate for non-orthogonality of the two error(     , )
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 OAMP-Net outperforms the OAMP algorithm and LMMSE-TISTA network

 Number of trainable variables is 2 times of iteration number and independent of  the 

number of antennas N and M

Rayleigh MIMO Channel

D. Ito, S. Takabe, and T. Wadayama, “Trainable ISTA for sparse signal recovery,” arxiv preprint 

arXiv:1801.01978, 2018.
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 OAMP-Net outperforms the OAMP algorithm when M=N=4

 Obtain more gains under correlated MIMO channel

Correlated MIMO Channel

QPSK
M=N=4
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 OAMP-Net outperforms the OAMP algorithm when M=N=4

High-order Modulation

16QAM
M=N=4
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 OAMP-Net outperforms the OAMP algorithm when M=N=4

High-order Modulation

64QAM
M=N=4
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 OAMP-Net for imperfect CSI

 Learn to damp

 Expectation propagation-based Network for MIMO detection:

 Low-resolution ADC architectures:

Future Works

J. C´espedes, P. M. Olmos, M. S´anchez-Fernandez, and F. P´erez-Cruz, “Expectation propagation 

detection for high-order high-dimensional MIMO systems,” IEEE Trans. Commun., vol. 62, no. 8, pp. 

2840-2849, Aug. 2014.

I. Santos and J. Murillo-Fuentes, “EP-based turbo detection for MIMO receivers and large-scale 

systems,” arxiv preprint arXiv:1805.05065, 2018.

H.-T. He, C.- K. Wen, and S. Jin, “Generalized expectation consistent signal recovery for nonlinear 

measurements,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 2333–2337.
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