PREDICTING POWER OUTAGES USING GRAPH NEURAL NETWORKS

Predicting Power Outages

- Power outages have huge economic cost \Rightarrow \$22B and \$135B annually [Campbell '12] \Rightarrow Most caused by weather conditions [Panteli '15]
- Weather data can be expressed as a graph signal \Rightarrow Graph based on distance between weather stations

Objectives

- Predict power outages using weather data
- Validate efficacy of graph neural networks

Convolutional Neural Networks for Graphs

 \blacktriangleright Existing CNNs \Rightarrow Remarkable performance in processing regular data \Rightarrow Convolution, pooling need a regular,

multi-resolution domain

Lots of data presents alternative irregular structural information

 \Rightarrow Especially, many problems in wireless systems (network \Leftrightarrow graph)

Graph Neural Networks (GNNs) generalize CNNs

- \Rightarrow Convolution \Rightarrow Linear shift-invariant graph filters
- \Rightarrow Pooling \Rightarrow Local nonlinearity followed by downsampling

Convolutional Neural Networks on Graphs

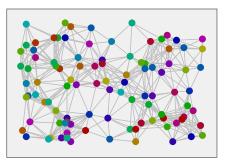
 \blacktriangleright Network structure \Rightarrow Graph matrix S (Adjacency A, Laplacian L)

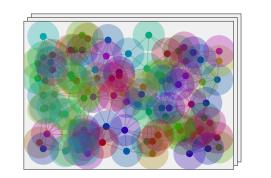
 \Rightarrow [**S**]_{*ij*} = Relationship between *i* and *j* (underlying graph support

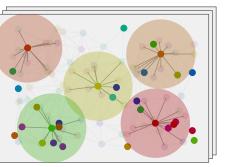
- Define a signal x on top of the graph
- \Rightarrow [**x**]_{*i*} = Signal value at node *i* • Graph Signal Processing \Rightarrow Exploit structure
- encoded in **S** to process **x** Generate features through (local) convolution and
- (local) pooling
 - \Rightarrow Convolution is a linear shift invariant filter

 $y = h_0 S^0 x + h_1 S^1 x + h_2 S^2 x + ... + h_{K-1} S^{K-1} x$ $= \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x} := \mathbf{H} \mathbf{x}$

 \Rightarrow Pooling summarizes information in graph neighborhoods







- But beyond first layer there's no graph connecting signal components
- Define pooling operations on S as well
 - \Rightarrow Clustering [Defferrard '16]
 - \Rightarrow Selection [Gama '18]
 - \Rightarrow Aggregation [Gama '18]

Graph Neural Network Architectures

Clustering

- at each layer
- Multi-scale hierarchical clustering algorithm applied Corresponding S has a lower dimension
- More details can be found in [Defferrard '16]

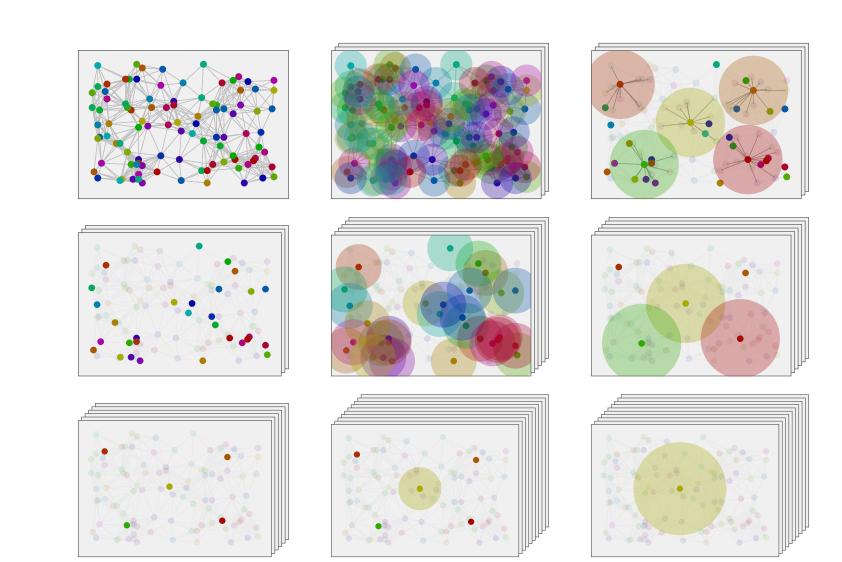
Selection

- Linear shift invariant graph filters to build convolutional features
- ► Pooling as subsampling \Rightarrow Remember sampled locations on graph
- Use zero padding for convolutional features at hidden layers

Aggregation

- Successively apply graph shift. Store observed values at one node
- Creates signal with time structure that incorporates graph topology
- We can now perform convolution and pooling on the time domain
- padding

Selection GNN



Selection GNNs

- Bypass the need to generate new graphs \Rightarrow Achieved by downsampling and zero padding. Selection defined by matrix $\mathbf{C}_{\ell} \in \{0, 1\}^{N_{\ell} \times N_{\ell-1}}$
- Feature \mathbf{x}_1^g is not supported on the same graph
- (smaller dimension) \Rightarrow Problem can be solved by remembering location of sampled nodes
- ▶ Place signal $\mathbf{x}_{\ell-1}^{g}$ on the original input graph \Rightarrow Zero-pad input features $\tilde{\mathbf{x}}_{\ell-1}^{g} = \mathbf{D}_{\ell-1}^{\mathsf{T}} \mathbf{x}_{\ell-1}^{g}, \mathbf{D}_{\ell-1} = \mathbf{C}_{\ell} \mathbf{C}_{\ell-1} \cdots \mathbf{C}_{1} \in \{0, 1\}^{N_{\ell} \times N}$
- Therefore the convolution operation becomes

$$\mathbf{H}_{\ell}^{\mathit{fg}}\mathbf{x}_{\ell}^{\mathit{g}}$$

- "Graph filter $\Rightarrow \mathbf{S}_{\ell}^{(k)} := \mathbf{D}_{\ell-1} \mathbf{S}^{k} \mathbf{D}_{\ell-1}^{\mathsf{T}}$
- **Pooling.** Get α_{ℓ} -hop neighborhood using $\mathbf{S}_{\ell}^{(\kappa)}$ for some $k \leq \alpha_{\ell}$

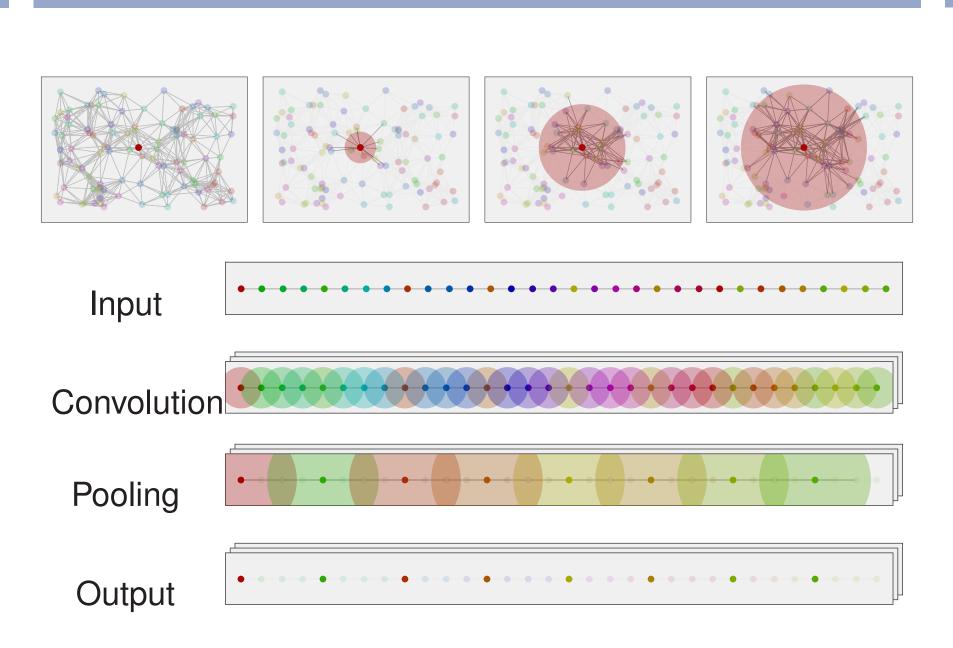
Damian Owerko, Fernando Gama and Alejandro Ribeiro E-mail: owerko@sas.upenn.edu Dept. of Electrical & Systems Engineering, University of Pennsylvania

Multi-node version with outer layers using zero

$$\mathbf{L}_{l-1} = \mathbf{D}_{\ell-1} \left(\sum_{k=0}^{K_{\ell}-1} [\mathbf{h}_{\ell}^{fg}]_{k} \mathbf{S}^{k} \right) \mathbf{D}_{\ell-1}^{\mathsf{T}} \mathbf{x}_{\ell-1}^{g}$$

r" using sampled *k*-shift matrices

Aggregation GNN



Regular Convolution in Aggregation GNNs

- lnput \mathbf{x}_{0}^{g} is a signal over known *N*-node graph
- Select node $p \in \mathcal{V} \Rightarrow$ Perform N local exchanges
- Consecutive elements encode nearby neighbors

$\mathbf{z}^{g}(\boldsymbol{\rho}, \boldsymbol{N}) = \left[[\mathbf{x}_{0}^{g}]_{\boldsymbol{\rho}}, [\mathbf{S}\mathbf{x}_{0}^{g}]_{\boldsymbol{\rho}}, [\mathbf{S}^{2}\mathbf{x}_{0}^{g}]_{\boldsymbol{\rho}}, \dots, [\mathbf{S}^{\boldsymbol{N}-1}\mathbf{x}_{0}^{g}]_{\boldsymbol{\rho}} \right]^{\mathsf{T}}$

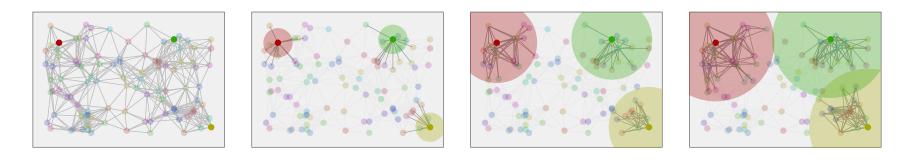
This resulting signal has a regular structure \Rightarrow We can use a regular convolution

$$\begin{bmatrix} \mathbf{u}_{1}^{fg} \end{bmatrix}_{n} = \begin{bmatrix} \mathbf{h}_{1}^{fg} * \mathbf{z}_{p} \end{bmatrix}_{n}$$
$$= \sum_{k=0}^{K_{1}-1} \begin{bmatrix} \mathbf{h}_{1}^{fg} \end{bmatrix}_{k}$$
$$K_{1}-1$$

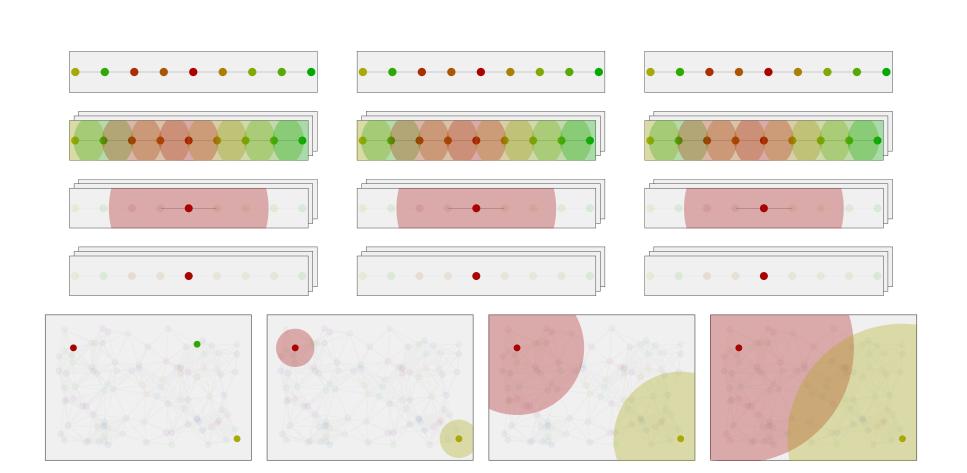
⇒ Effectively relates neighboring information encoded by the graph

- Therefore regular pooling and downsampling can be used as well
- \blacktriangleright N exchanges can be expensive \Rightarrow select a subset of nodes $\mathcal{P} \subset \mathcal{V}$

 \Rightarrow This leads to multi-node aggregation, a hybrid between selection and aggregation



Multi-Node Aggregation GNNs



••••••••

 $|\mathbf{z}_{p}|_{n-k}$

Dataset

- We use weather data to predict power outage even
- Considering Jan '11 -Dec '15
- NYC Weather data \Rightarrow Hourly logs from 123 weather stations \Rightarrow 26,304 datapoints
- NY electrical disturbance events \Rightarrow 25 such events occur
- Preprocessing needed to collate datasets
- Some weather data was missing from the original dataset
- \Rightarrow Implement a greedy algorithm to select N = 2stations
- \Rightarrow and a subset of datapoints with no missing datapoints
- ► In total there are 5,777 datapoints (hours) \Rightarrow during 218 of which there was a major disturbance event
- 10% of the dataset is randomly chosen as a test se \Rightarrow the rest is used for training and validation

Defining a Graph Signal

- Each weather station takes a variety of hourly measurements
- \Rightarrow we use pressure, temperature, wind speed, pressure rate per hour, humidity, humidity rate per hour and precipitation rate
- At each hour we consider a datapoint (\mathbf{x}^{g}, y) \Rightarrow y = 1 if major electrical disturbance at that hour, otherwise y = 0

 $\Rightarrow [\mathbf{x}^g]_i$ is the weather feature g at station i Define the graph shift operator **S** based on distance between stations

• We apply a Gaussian kernel to $d(i, j) \Rightarrow$ distance between stations *i*, *j*

$$\sigma_{j} = \exp\left(-rac{d(i,j)^2}{2\sigma^2}
ight)$$
 where $\sigma = 0.1$

• Additionally a threshold, ϵ_W , is applied to **S**

Selected References

S_i

- Earth Networks, "Historical observations," 13 March 2018.
- M. Defferrard et al., "Convolutional neural networks on graphs with fast localized spectral filtering," in Neural Inform. Process. Syst. 2016. Barcelona, Spain: NIPS Foundation, 5-10 Dec. 2016..
- F. Gama et al., "Convolutional neural network architectures for signals supported on graphs," arXiv:1805.00165v1 [eess.SP], 1 May 2018.
- M. Panteli and P. Mancarella, "Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigati strategies," Electric Power Systems Research, vol. 127, pp. 259?270, Oct 2015.
- R. J. Campbell, "Weather-related power outages and electric system resiliency," Congressional Research Service, CRS Report for Congress 7-5700 (R42696), 28 Aug. 2012.
- U.S. Energy Information Administration, "Electric power monthly," 25 March 2014.

	Numerical Experiments
its	 We compare the performance of the architectures against several baseline methods. Neural network We concatenate all features into one long vector of length N × 7 Perform a hyperparameter search ↓ FC layers, F_ℓ hidden units at layer ℓ and dropout d Due to prevalence of negative labels in the dataset NN converges to trivial solution ⇒ The network would output 0 for all inputs ⇒ We correct this by weighing positive labels more heavily 10 : 1 Affine space model (PCA) We found using just pressure data results in highest
25	 We lot using just pressure data results in highest performance Estimate interclass mean μ_y and covariance matrix Σ_y We minimize the projection of the input on the class eigenvector matrix
	$\hat{y} = \operatorname{argmin}_{y \in \{0,1\}} \mathbf{V}_{y} (\mathbf{x} - \boldsymbol{\mu}_{y}) $
et	ArchitectureAccuracyF1 ScoreClustering68%2.42Selection48%2.60Aggregation65%2.25Multi-Node74%1.90No pooling86%1.04Neural Network61%2.88PCA86%1.04
on	Results
	 We predict power outages in NY from weather data This is used to compare graph neural networks against baseline methods ⇒ a neural network and an affine space model No pooling yielded the best results with the highest F1 score However, all GNN architectures outperform the baseline methods
	Conclusions and Future Work
ion t.	 Graph neural networks outperform NN at this task ⇒ Simultaneously, they have far fewer parameters All architectures managed to perform better than the trivial solution The best performing architecture brings a 70% improvement in prediction error Successfully demonstrated the use of GNNs Other potential architectures such as Graph RNNs ⇒ Applications in machine translation