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Predicting Power Outages

I Power outages have huge economic cost
⇒ $22B and $135B annually [Campbell ’12]

⇒ Most caused by weather conditions [Panteli ’15]
I Weather data can be expressed as a graph signal

⇒ Graph based on distance between weather
stations

Objectives
I Predict power outages using weather data
I Validate efficacy of graph neural networks

Convolutional Neural Networks for Graphs

I Existing CNNs ⇒ Remarkable performance in
processing regular data
⇒ Convolution, pooling need a regular,

multi-resolution domain
I Lots of data presents alternative irregular structural

information
⇒ Especially, many problems in wireless systems

(network⇔ graph)

Graph Neural Networks (GNNs) generalize CNNs
⇒ Convolution ⇒ Linear shift-invariant graph filters
⇒ Pooling ⇒ Local nonlinearity followed by

downsampling

Convolutional Neural Networks on Graphs

I Network structure ⇒ Graph matrix S (Adjacency A,
Laplacian L)
⇒ [S]ij = Relationship between i and j (underlying

graph support)
I Define a signal x on top of the graph

⇒ [x]i = Signal value at node i
I Graph Signal Processing ⇒ Exploit structure

encoded in S to process x
I Generate features through (local) convolution and

(local) pooling
⇒ Convolution is a linear shift invariant filter

y = h0S0x + h1S1x + h2S2x + . . . + hK−1SK−1x
=
∑K−1

k=0 hkSkx := Hx

⇒ Pooling summarizes information in graph
neighborhoods

I But beyond first layer there’s no graph connecting
signal components

I Define pooling operations on S as well
⇒ Clustering [Defferrard ’16]

⇒ Selection [Gama ’18]

⇒ Aggregation [Gama ’18]

Graph Neural Network Architectures

Clustering
I Multi-scale hierarchical clustering algorithm applied

at each layer
I Corresponding S has a lower dimension
I More details can be found in [Defferrard ’16]

Selection
I Linear shift invariant graph filters to build

convolutional features
I Pooling as subsampling ⇒ Remember sampled

locations on graph
I Use zero padding for convolutional features at

hidden layers

Aggregation
I Successively apply graph shift. Store observed

values at one node
I Creates signal with time structure that incorporates

graph topology
I We can now perform convolution and pooling on the

time domain
I Multi-node version with outer layers using zero

padding

Selection GNN

Selection GNNs

I Bypass the need to generate new graphs
⇒ Achieved by downsampling and zero padding.

I Selection defined by matrix C` ∈ {0,1}N`×N`−1

I Feature xg
1 is not supported on the same graph

(smaller dimension)
⇒ Problem can be solved by remembering

location of sampled nodes
I Place signal xg

`−1 on the original input graph
⇒ Zero-pad input features

x̃g
`−1 = DT

`−1xg
`−1,D`−1 = C`C`−1 · · ·C1 ∈ {0,1}N`×N

I Therefore the convolution operation becomes

Hfg
` xg

`−1 = D`−1

K`−1∑
k=0

[hfg
` ]kSk

DT
`−1xg

`−1

I “Graph filter” using sampled k -shift matrices
⇒ S(k)

` := D`−1SkDT
`−1

I Pooling. Get α`-hop neighborhood using S(k)
` for

some k ≤ α`

Aggregation GNN
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Regular Convolution in Aggregation GNNs

I Input xg
0 is a signal over known N-node graph

I Select node p ∈ V ⇒ Perform N local exchanges
I Consecutive elements encode nearby neighbors

zg(p,N) =
[
[xg

0]p, [Sxg
0]p, [S

2xg
0]p, . . . , [S

N−1xg
0]p
]T

I This resulting signal has a regular structure
⇒We can use a regular convolution[
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⇒ Effectively relates neighboring information
encoded by the graph

I Therefore regular pooling and downsampling can be
used as well

I N exchanges can be expensive ⇒ select a subset
of nodes P ⊂ V
⇒ This leads to multi-node aggregation, a hybrid

between selection and aggregation

Multi-Node Aggregation GNNs

Dataset

I We use weather data to predict power outage events

I Considering Jan ’11 -
Dec ’15

I NYC Weather data
⇒ Hourly logs from

123 weather stations
⇒ 26,304 datapoints

I NY electrical
disturbance events
⇒ 25 such events

occur
I Preprocessing needed

to collate datasets
I Some weather data was missing from the original

dataset
⇒ Implement a greedy algorithm to select N = 25

stations
⇒ and a subset of datapoints with no missing

datapoints
I In total there are 5,777 datapoints (hours)

⇒ during 218 of which there was a major
disturbance event

I 10% of the dataset is randomly chosen as a test set
⇒ the rest is used for training and validation

Defining a Graph Signal

I Each weather station takes a variety of hourly
measurements
⇒ we use pressure, temperature, wind speed, pressure

rate per hour, humidity, humidity rate per hour and precipitation
rate

I At each hour we consider a datapoint (xg, y)
⇒ y = 1 if major electrical disturbance at that

hour, otherwise y = 0
⇒ [xg]i is the weather feature g at station i

Define the graph shift operator S based on distance
between stations
I We apply a Gaussian kernel to d(i , j) ⇒ distance

between stations i , j

Sij = exp

(
−d(i , j)2

2σ2

)
where σ = 0.1

I Additionally a threshold, εw , is applied to S
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Numerical Experiments

We compare the performance of the architectures
against several baseline methods.
Neural network
I We concatenate all features into one long vector of

length N × 7
I Perform a hyperparameter search

⇒ L FC layers, F` hidden units at layer ` and
dropout d

I Due to prevalence of negative labels in the dataset
NN converges to trivial solution
⇒ The network would output 0 for all inputs
⇒We correct this by weighing positive labels

more heavily 10 : 1
Affine space model (PCA)
I We found using just pressure data results in highest

performance
I Estimate interclass mean µy and covariance matrix

Σy
I We minimize the projection of the input on the class

eigenvector matrix

ŷ = argmin
y∈{0,1}

||Vy(x− µy)||

Architecture Accuracy F1 Score

Clustering 68% 2.42
Selection 48% 2.60
Aggregation 65% 2.25
Multi-Node 74% 1.90
No pooling 86% 1.04
Neural Network 61% 2.88
PCA 86% 1.04

Results

I We predict power outages in NY from weather data
I This is used to compare graph neural networks

against baseline methods
⇒ a neural network and an affine space model

I No pooling yielded the best results with the highest
F1 score

I However, all GNN architectures outperform the
baseline methods

Conclusions and Future Work

I Graph neural networks outperform NN at this task
⇒ Simultaneously, they have far fewer

parameters
I All architectures managed to perform better than the

trivial solution
I The best performing architecture brings a 70%

improvement in prediction error
I Successfully demonstrated the use of GNNs
I Other potential architectures such as Graph RNNs

⇒ Applications in machine translation
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