6th IEEE Global Conference on Signal and Information Processing Nov. 2018 - Anaheim, CA MHI L.2.3

Persistent Hyperspectral Observations of the Urban Lightscape

J. Baur, G. Dobler, F. Bianco, S. Koonin, M. Sharma, A. Karpf Urban Observatory

..........

Center for Urban Science + Progress

CUSP Urban Observatory

Better cities through imaging

Main Focus

Energy

electrical energy consumption patterns

• stresses on the power grid

Environment

- measuring the impact of cities on air quality
- detecting plumes

Public Health & Policy

light pollution circadian rhythm https://cuspuo.org
@CUSPUO

Gregory Dobler UO Director Federica Bianco Senior Research Scientist Steven Koonin CUSP Director

Mohit Sharma Research Scientist

Andreas Karpf

Project Manager

Julien Baur Postdoc Associate

CUSP Urban Observatory

Better cities through imaging

Main Focus

Energy

electrical energy consumption patterns

stresses on the power grid

Environment

measuring the impact of cities on air quality detecting plumes

Public Health & Policy

light pollution circadian rhythm

https://cuspuo.org
@CUSPUO

Our Team

Gregory Dobler UO Director Federica Bianco Senior Research Scientist Steven Koonin CUSP Director

Mohit Sharma Research Scientist

Andreas Karpf

Project Manager

Julien Baur Postdoc Associate

IDEAS grant AR0000886-F0217:

Grid Dynamics and Energy Consumption Patterns through remote observations of city lights

Imaging the NYC Lightscape

Remote, Persistent, Synoptic

Instrumentation

Middleton Spectral Vision

vertical slit (30μ m) aperture spectrograph

Imperx B1621 camera (mono) KAI-02050 CCD image sensor

> 5.5 μm 8.98 mm x 6.78 mm 1600 x 1200 pixels 42 fps

848 spectral channels

deployment setup

Instrumentation

Middleton Spectral Vision

vertical slit (30μ m) aperture spectrograph

Imperx B1621 camera (mono) KAI-02050 CCD image sensor

5.5 μm 8.98 mm x 6.78 mm sensor format: 1600 x 1200 pixels 42 fps

Instrumentation

1600 vertical pixels

/pan direction

Instrumentation

1600 vertical pixels

pan direction

Instrumentation

Middleton Spectral Vision

Specim V10E vertical slit (30µm) aperture spectrograph

> 0.4 - 1.1 μm 0.72 x 10⁻³μm (fwhm)

> > Imperx B1621 camera (mono) KAI-02050 CCD image sensor

pixel size:5.5 μmsensor format:8.98 mm x 6.78 mmresolution:1600 x 1200 pixelsframe rate:42 fps

Cleaned Data

Hyperspectral Survey

Manhattan, 2013

"A Hyperspectral Survey of New York City Lighting Technology" Dobler, Ghandehari, Koonin & Sharma Sensors, vol.16 no12, 2016 DOI:<u>10.3390/s16122047</u>

Manhattan view (north facing)

New York City Lighting Technologies

wavelength [range: 0.4-1.0 microns]

Hyperspectral Survey Brooklyn, 2017

Brooklyn view (south facing)

Lamp Spectral Power D is tribution Database

courtesy of Johanne Roby (CEGEP Sherbrook, QC) www.lspdd.com

- lab-measured spectral distributions of 254 light types
- BLACK-Comet spectrometer (StellarNet)

0.4 0.5 0.6 0.7 0.8 0.9 wavelength: λ / μm

Identifying Sources

integrated intensity [log scaled]

Source Detection

Selection

training sample: 500 source, 500 noise

1.0

1.0

Sample Split

333 testing set

00

Supervised Classifier Training

Classification

Classification

Performance

333 testing set

1	Test on sa) tests, shuffle	
		848 features (all λ)	2 features (VIS - NIR)
	accuracy score	97.4 % (± 0.7)	96.2 % (± 0.9)
	false ⊕	0.5 % (± 0.4)	0.7 % (± 0.4)
	false ⊖	2.1 % (± 0.7)	3.1 % (± 0.9)

Performance

Test on samples100 tests, shuffle			
		848 features (all λ)	2 features (VIS - NIR)
	accuracy score	97.4 % (± 0.7)	96.2 % (± 0.9)
	false ⊕	0.5 % (± 0.4)	0.7 % (± 0.4)
	false ⊖	2.1 % (± 0.7)	3.1 % (± 0.9)

1

00

O

2 Labelling full cube 5.1 x10⁶ pixels cpu time (1 core) 0 960 sec 0 60 sec

Transferability

1	Test on sa	mples 100) tests, shuffle
		0.40 fa atuma a	0 fa atuma a

	848 features (all λ)	2 features (VIS - NIR)
accuracy score	97.4 % (± 0.7) 96.2 % (± 0.4)	96.2 % (± 0.9) 93.8 % (± 0.9)
false ⊕	0.5 % (± 0.4) 0.4 % (± 0.2)	0.7 % (± 0.4) 0.2 % (± 0.1)
false ⊖	2.1 % (± 0.7) 3.3 % (± 0.5)	3.1 % (± 0.9) 6.0 % (± 0.6)

00 0

00

0

О

2	Labelling full cube		2.5 x1	0 ⁶ pixels
		_		

cpu time	∿ 960 sec	∿ 60 sec
(1 core)	∿ 460 sec	∿ 29 sec

Transferability

1	Test on sa	mples
		848 fe

100 tests,	shuffle
------------	---------

	848 features (all λ)	2 features (VIS - NIR)
accuracy score	97.4 % (± 0.7) 96.2 % (± 0.4)	96.2 % (± 0.9) 93.8 % (± 0.9)
false ⊕	0.5 % (± 0.4) 0.4 % (± 0.2)	0.7 % (± 0.4) 0.2 % (± 0.1)
false ⊖	2.1 % (± 0.7) 3.3 % (± 0.5)	3.1 % (± 0.9) 6.0 % (± 0.6)

cpu time	∿ 960 sec	∿ 60 sec
(1 core)	∿ 460 sec	∿ 29 sec

Next Step Technology Penetration & Time Series

Thank You

for your attention

julien.baur@nyu.edu https://cuspuo.org @CUSPUO http://cusp.nyu.edu/