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Scope of the work

• Motivation: tasks of signal modeling on directed graphs
• Extension of Graph Signal Processing to digraph
• Numerical explorations about parametric signal modeling

• Joint work with Harry Sevi (PhD defended last week)
and Gabriel Rilling (CEA List)

• Work supported by:
• ANR-14-CE27-0001 GRAPHSIP grant
• ACADEMICS grant in the Scientific Breakthrough Program IDEXLYON
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A mandatory slide on Graph Signal Processing

• Given a graph G, let’s consider a signal s on the nodes V
• How to apply signal processing on this data / signal ?

Epidemiological network

Undirected graph
[G.Ghoshal (2009), Potterat et al. (2002)]

Road network
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Directed graph
[G. Michau, PB et al., 2017]
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A Fundamental analogy for undirected graphs
[Shuman et al., IEEE SP Mag, 2013]

A fundamental analogy
On any graph, the eigenvectors χi of the Laplacian matrix L = D− A will
be considered as the Fourier modes, and its eigenvalues λi the associated
(squared) frequencies.

ŝ = χ> s
where χ = (χ1|χ2| . . . |χN)

• Two ingredients:
• Fourier modes = Eigenvectors χi

• Frequencies = Eigenvalues related to variation: ||∇χi ||2

||χi ||2
= λi , because

∀x ∈ RN
∑

e=(i,j)∈E

Aij (xi − xj )
2 = x>Lx
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What about directed graphs ?

Graph cyclic undirected directed
1 2
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Fourier Modes eiωt χ ?

Operator L ?

Frequency ω λ ?

Variation 〈χ,Lχ〉 ?
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Measure of Variations

Undirected: Directed:

VQ(f ) =
∑

i,j

aij |fi − fj |2

= 〈f ,Lf 〉

D2
π,P(f ) =

1
2

∑
i,j

πipij |fi − fj |2.

= 〈f ,Ldir f 〉.
with with

L = D− A. Ldir = Π− ΠP + P>Π
2

• Directed case
• use of P = D−1A the random walk operator
• and its associated stationary distribution π

• Undirected case : Π ∝ D⇒ Ldir ∝ L.

p. 6



Introduction Digraph FT Parametric Modeling Numerical explorations Conclusion

Fourier modes on directed graphs
Random walk operator
• Random walk Xn : position X at time n.
• Pij = P(Xn = j|Xn−1 = i) is its transition probability

P =


0 1 0 0
1
2 0 1

2 0
0 0 0 1
0 1 0 0

 = D−1A

1

3
4

2

Proposition of Fourier Modes
• Eigenvectors Pξk = θkξk Ξ = [ξ1, . . . , ξN ] the basis
• Fourier representation of s

s =
∑

k

ŝkξk = Ξŝ.

where ŝ = [ŝ1, . . . , ŝN ]> are the Fourier coefficients
• Digraph Fourier Transform :

ŝ = Ξ−1s.

• Beware : complex eigenvalues : θ = α + iβ, |θ| ≤ 1.
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Frequency analysis of modes of P

Fourier Modes:

[ξ1, . . . , ξN ]

Variations:

D2
π,P(f ) = 〈f ,Ldir f 〉

Frequency analysis:

D2
π,P(ξ)

〈ξ,Πξ〉 = 1 − Re(θ)

• Let’s define the frequency of ξ from its complex eigenvalue θ :

ω = 1−Re(θ), ω ∈ [0, 2]

["Analyse fréquentielle et filtrage sur graphes dirigés", Sevi et al., GRETSI, 2017]
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Summary of the proposed framework

Graphe cyclic undirected directed

1 2
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Fourier Mode eiωt ϕ ξ

Operator L P

Frequency ω λk ω = 1−Re(θ)

Variation 〈ϕ,Lϕk 〉 〈ξ,Ldirξ〉
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Parametric modeling
Problem formulation
• Model a signal, eg., for compression or inpainting
• Assumption: a partial observation y of f

Objective
• Estimate the missing data points from y

Dataset of test: Political Blogs US 2004 [Adamic et al., 2004]

• Node : a blog
• Edge : hyperlink from a blog to

another
• Signal : political side (Republican /

Democrat).
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Solution of the problem

• We observe Y k = εk f k , where the εk = 1 if known, else 0
• Decide upon a reference operator, noted R, first R = P or A
• Model the signal thanks to a parametric graph filter H:

H(θ) =
K∑

k=0

θk Rk , θk ∈ R. (1)

• Parameter estimation

θ̂ = argmin
θ={θk}K

k=0∈R
K+1

E
[
‖f −

K∑
k=0

θk Rk Y‖2
µ

]
, (2)

• (that has well-known solution)
• Signal model :

f̂ (θ) =
K∑

k=0

θ̂k Rk Y
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Experimental results (1)
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Alternative Reference Operator (1)

Other Reference operators R could be used :

• P∗, associated to the time reversed random walk: P∗ = Π−1P>Π.

• P̄, the additive reversibilization of P: P̄ =
P + P∗

2
.

Prop.: P,P∗, P̄ lead all to DiGFT with frequency related to Variations

p. 13



Introduction Digraph FT Parametric Modeling Numerical explorations Conclusion

Experimental results (2)
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Alternative Reference Operator (2)

• P∗, associated to the time reversed random walk: P∗ = Π−1P>Π.

• P̄, the additive reversibilization of P: P̄ =
P + P∗

2
.

Generalization: convex combination between P and P∗

Pα = (1− α)P + αP∗

for α ∈ [0, 1].

Prop.: Pα leads all to DiGFT with frequency related to Variations
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Experimental results (3)
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Further numerical explorations

• Results depends on the sampling law for εk

where Y k = εk f k

• A limit of choosing P: it requires a strongly connected graph...
• 1) use connected components,
• or 2) modify the graph

• add a small rank-one perturbation (Cons: non-sparse)
• construct the “google” matrix: complete dangling nodes (i.e., nodes with

dout = 0) and then add a probability of jumping anywhere
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Experimental results (4)
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Conclusion

• Use of GSP on directed graphs

• A full framework to generalize Laplacian-based approaches to digraphs,
- using random walk (or generalisations Pα) as Reference operator
- and Ldir to measure variations and define frequency

• A numerical exploration around the task of signal modeling

• More developments:
spectral wavelets and diffusion wavelets with P on digraphs

• Contact and more information:

http://perso.ens-lyon.fr/pierre.borgnat
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