Digraph FT

Parametric Modeling

Numerical explorations

Conclusion O

MODELING SIGNALS OVER DIRECTED GRAPHS THROUGH FILTERING

Pierre Borgnat

Senior Research Fellow CNRS – Physics Laboratory, ENS de Lyon, France Sisyphe group (Signals, Systems and Physics) and IXXI (Complex System Institute Lyon)

GlobalSIP, Anaheim, CA, 11/2018

oduction	
0	

Intr

Digraph FT

Parametric Modeling

Numerical explorations

Conclusion O

Scope of the work

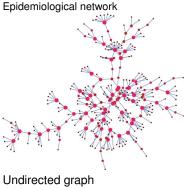
- Motivation: tasks of signal modeling on directed graphs
- Extension of Graph Signal Processing to digraph
- Numerical explorations about parametric signal modeling
- Joint work with Harry Sevi (PhD defended last week) and Gabriel Rilling (CEA List)
- Work supported by:
 - ANR-14-CE27-0001 GRAPHSIP grant
 - ACADEMICS grant in the Scientific Breakthrough Program IDEXLYON

Digraph FT 00000 Parametric Modeling

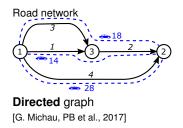
Numerical explorations

A mandatory slide on Graph Signal Processing

- Given a graph G, let's consider a signal s on the nodes V
- How to apply signal processing on this data / signal ?



[G.Ghoshal (2009), Potterat et al. (2002)]



Digraph F1 00000 Parametric Modeling

Numerical explorations

Conclusion O

A Fundamental analogy for undirected graphs [Shuman et al., *IEEE SP Mag*, 2013]

A fundamental analogy

On *any* graph, the **eigenvectors** χ_i of the Laplacian matrix $\mathbf{L} = \mathbf{D} - \mathbf{A}$ will be considered as the Fourier modes, and its eigenvalues λ_i the associated (squared) frequencies.

$$\hat{\mathbf{S}} = \boldsymbol{\chi}^{ op} \, \mathbf{S}$$

where $oldsymbol{\chi} = (oldsymbol{\chi}_1 | oldsymbol{\chi}_2 | \dots | oldsymbol{\chi}_N)$

• Two ingredients:

- Fourier modes = Eigenvectors χ_i
- Frequencies = Eigenvalues related to variation: $\frac{||\nabla \chi_i||^2}{||\chi_i||^2} = \lambda_i$, because

$$\forall \mathbf{x} \in \mathbb{R}^N \quad \sum_{e=(i,j)\in E} A_{ij} (\mathbf{x}_i - \mathbf{x}_j)^2 = \mathbf{x}^\top \mathbf{L} \mathbf{x}$$

Introduction 000	Digraph FT ●0000	Parametric I 00		Numerical explorations	Conclusion O
	Wł	nat about c	lirected graph	าร ?	
Graph		cyclic	undirected	directed ¹ ² ³ ²	1

Fourier Modes	$e^{i\omega t}$	χ	?
Operator		L	?
Frequency	ω	λ	?
Variation		$\langle oldsymbol{\chi}, {f L} oldsymbol{\chi} angle$?

Digraph FT

Parametric Modeling

Numerical explorations

Conclusion O

Measure of Variations

Undirected:

$$VQ(f) = \sum_{i,j} a_{ij} |f_i - f_j|^2$$
$$= \langle f, Lf \rangle$$
with

L = D - A.

$$\mathcal{D}_{\pi,\mathbf{P}}^{2}(\boldsymbol{f}) = \frac{1}{2} \sum_{i,j} \pi_{i} \boldsymbol{p}_{ij} |f_{i} - f_{j}|^{2}.$$
$$= \langle \boldsymbol{f}, \boldsymbol{\mathsf{L}}_{dir} \boldsymbol{f} \rangle.$$
with

$$\mathsf{L}_{\mathit{dir}} = \Pi - rac{\Pi\mathsf{P} + \mathsf{P}^{ op}\Pi}{2}$$

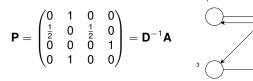
- Directed case
 - use of $\mathbf{P} = \mathbf{D}^{-1}\mathbf{A}$ the random walk operator
 - and its associated stationary distribution π
- Undirected case : $\Pi \propto \mathbf{D} \Rightarrow \mathbf{L}_{dir} \propto \mathbf{L}$.

 $\boldsymbol{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_N]$ the basis

Fourier modes on directed graphs

Random walk operator

- Random walk X_n : position X at time n.
- $\mathbf{P}_{ij} = \mathbb{P}(X_n = j | X_{n-1} = i)$ is its transition probability



Proposition of Fourier Modes

- Eigenvectors $\mathbf{P}\boldsymbol{\xi}_k = \theta_k \boldsymbol{\xi}_k$
- Fourier representation of s

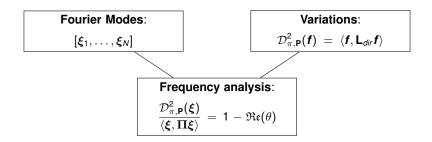
$$m{s} = \sum_k \hat{m{s}}_k m{\xi}_k = m{\Xi} \hat{m{s}}_k$$

where $\hat{\boldsymbol{s}} = [\hat{s}_1, \dots, \hat{s}_N]^\top$ are the Fourier coefficients

• Digraph Fourier Transform :

$$\hat{\boldsymbol{s}} = \boldsymbol{\Xi}^{-1} \boldsymbol{s}$$

• Beware : complex eigenvalues : $\theta = \alpha + i\beta$, $|\theta| \le 1$.



• Let's define the **frequency** of $\boldsymbol{\xi}$ from its complex eigenvalue θ :

$$\omega = 1 - \mathfrak{Re}(\theta), \quad \omega \in [0, 2]$$

["Analyse fréquentielle et filtrage sur graphes dirigés", Sevi et al., GRETSI, 2017]

Introduction	Digraph FT	Parametric Modeling	Numerical explorations	Conclusion
000	00000	00	000000	0

Summary of the proposed framework

Graphe	cyclic	undirected	directed
Fourier Mode	$e^{i\omega t}$	arphi	ξ
Operator		L	Р
Frequency	ω	λ_k	$\omega = 1 - \mathfrak{Re}(heta)$
Variation		$\langle oldsymbol{arphi}, {\sf L} oldsymbol{arphi}_k angle$	$\langle oldsymbol{\xi}, L_{\mathit{dir}} oldsymbol{\xi} angle$

oduction O Digraph FT 00000 Parametric Modeling

O

Numerical explorations

Conclusion O

Parametric modeling

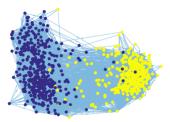
Problem formulation

- · Model a signal, eg., for compression or inpainting
- Assumption: a partial observation y of f

Objective

Estimate the missing data points from y

Dataset of test: Political Blogs US 2004 [Adamic et al., 2004]



- Node : a blog
- Edge : hyperlink from a blog to another
- **Signal** : political side (Republican / Democrat).

Digraph FT 00000 Parametric Modeling

Numerical explorations

Conclusion O

Solution of the problem

- We observe $\mathbf{Y}_k = \varepsilon_k \mathbf{f}_k$, where the $\varepsilon_k = 1$ if known, else 0
- Decide upon a reference operator, noted \mathbf{R} , first $\mathbf{R} = \mathbf{P}$ or \mathbf{A}
- Model the signal thanks to a parametric graph filter H:

$$\mathbf{H}(\boldsymbol{\theta}) = \sum_{k=0}^{K} \theta_k \mathbf{R}^k, \quad \theta_k \in \mathbb{R}.$$
 (1)

Parameter estimation

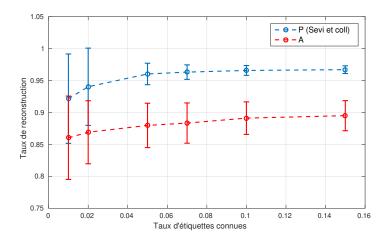
$$\widehat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta} = \{\boldsymbol{\theta}_k\}_{k=0}^{K} \in \mathbb{R}^{K+1}} \mathbb{E} \bigg[\|\boldsymbol{f} - \sum_{k=0}^{K} \boldsymbol{\theta}_k \mathbf{R}^k \boldsymbol{Y} \|_{\mu}^2 \bigg],$$
(2)

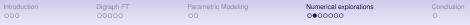
- (that has well-known solution)
- Signal model :

$$\hat{\boldsymbol{f}}(heta) = \sum_{k=0}^{K} \hat{ heta}_k \mathbf{R}^k \boldsymbol{Y}$$

Introduction	Digraph FT 00000	Parametric Modeling	Numerical explorations	Conclusion O

Experimental results (1)





Alternative Reference Operator (1)

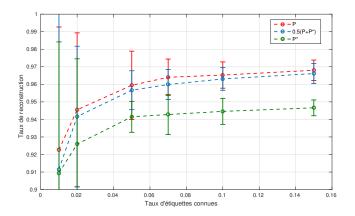
Other Reference operators R could be used :

- \mathbf{P}^* , associated to the time reversed random walk: $\mathbf{P}^* = \mathbf{\Pi}^{-1} \mathbf{P}^\top \mathbf{\Pi}$.
- $\bar{\mathbf{P}}$, the additive reversibilization of \mathbf{P} : $\bar{\mathbf{P}} = \frac{\mathbf{P} + \mathbf{P}^*}{2}$.

Prop.: $\mathbf{P}, \mathbf{P}^*, \bar{\mathbf{P}}$ lead all to DiGFT with frequency related to Variations

000 00000 00 00 00000	Introduction	Digraph FT	Parametric Modeling	Numerical explorations	
	000	00000	00	000000	

Experimental results (2)



Alternative Reference Operator (2)

- \mathbf{P}^* , associated to the time reversed random walk: $\mathbf{P}^* = \mathbf{\Pi}^{-1} \mathbf{P}^\top \mathbf{\Pi}$.
- $\mathbf{\bar{P}}$, the additive reversibilization of \mathbf{P} : $\mathbf{\bar{P}} = \frac{\mathbf{P} + \mathbf{P}^*}{2}$.

Generalization: convex combination between P and P*

$$\mathbf{P}_{lpha} = (\mathbf{1} - lpha)\mathbf{P} + lpha\mathbf{P}^*$$

for $\alpha \in [0, 1]$.

Prop.: \mathbf{P}_{α} leads all to DiGFT with frequency related to Variations

	du	
IIIII		
00	0	

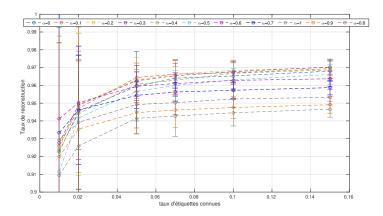
Digraph FT 00000

Parametric Modeling

Numerical explorations

Conclusion O

Experimental results (3)



ntroduction	Digraph FT	Parametric Modeling	Numerical explorations	Conclusion
000	00000	00	0000000	0

Further numerical explorations

- Results depends on the sampling law for ε_k where Y_k = ε_kf_k
- A limit of choosing P: it requires a strongly connected graph...
- 1) use connected components,
- or 2) modify the graph
 - add a small rank-one perturbation (Cons: non-sparse)
 - construct the "google" matrix: complete dangling nodes (i.e., nodes with $d^{out} = 0$) and then add a probability of jumping anywhere

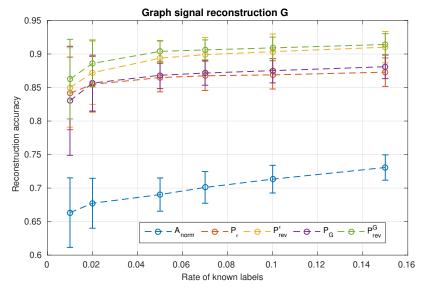
Digraph F

Parametric Modeling

Numerical explorations

Conclusion O

Experimental results (4)



Introduction 000	Digraph FT 00000	Parametric Modeling	Numerical explorations	Conclusion •		
Conclusion						

- Use of GSP on directed graphs
- A full framework to generalize Laplacian-based approaches to digraphs,
 - using random walk (or generalisations $\boldsymbol{P}_{\alpha})$ as Reference operator
 - and $\boldsymbol{L}_{\textit{dir}}$ to measure variations and define frequency
- A numerical exploration around the task of signal modeling
- More developments: spectral wavelets and diffusion wavelets with P on digraphs
- Contact and more information:

http://perso.ens-lyon.fr/pierre.borgnat