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Scope of the work

Motivation: tasks of signal modeling on directed graphs
Extension of Graph Signal Processing to digraph

Numerical explorations about parametric signal modeling

Joint work with Harry Sevi (PhD defended last week)
and Gabriel Rilling (CEA List)

Work supported by:

e ANR-14-CE27-0001 GRAPHSIP grant
e ACADEMICS grant in the Scientific Breakthrough Program IDEXLYON
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A mandatory slide on Graph Signal Processing

e Given a graph G, let’'s consider a signal s on the nodes V
e How to apply signal processing on this data / signal ?

Epidemiological network
N .
N 4 Ve

Road network

Directed graph
[G. Michau, PB et al., 2017]

Undirected graph
[G.Ghoshal (2009), Potterat et al. (2002)]
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A Fundamental analogy for undirected graphs
[Shuman et al., IEEE SP Mag, 2013]

A fundamental analogy

On any graph, the eigenvectors x; of the Laplacian matrix L = D — A will
be considered as the Fourier modes, and its eigenvalues )\ the associated
(squared) frequencies.

where x = (x1/xz|- - - [xn)

e Two ingredients:
o Fourier modes = Eigenvectors x;

12
o Frequencies = Eigenvalues related to variation: IVl Aj, because

lIxill2
vxe RN N Ap(xi — x)® =xTLx
e=(i,j)€E
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What about directed graphs ?

Conclusion
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Graph cyclic undirected directed
Fourier Modes et X ?
Operator L ?
Frequency w A ?
Variation (x;Lx) ?
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Measure of Variations
Undirected: Directed:
va(h = S alf — £ D p(f) = 3 S mmlt— f12
ij ij
= (f,Lf) = (f, Ly f).
with with
L=D-A Ld,-,:n—n'hrizpTH

e Directed case

e use of P = DA the random walk operator
e and its associated stationary distribution =

e Undirected case : IT o D = L o L.

Conclusion
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Fourier modes on directed graphs
Random walk operator

e Random walk X, : position X at time n.
e Pj =P(X, = j|Xo—1 = i) is its transition probability

o Oonv= O
L~ 00 =
O Om= O
o = O O

Proposition of Fourier Modes

e Eigenvectors P&, = 0x&x = = [&1,...,&n] the basis
e Fourier representation of s

S=Z§k$
k

where § = [81,...,8y] " are the Fourier coefficients
o Digraph Fourier Transform :

[I]

s

s=='s
e Beware : complex eigenvalues : 8 = a + i, |0] < 1.
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Frequency analysis of modes of P

Fourier Modes:
[51 PRI 7£N]

Variations:
Di p(f) = (f,Lacf)

Frequency analysis:

D3 p(§)
(€,I1¢)

=1 — Re(9)

o Let’s define the frequency of £ from its complex eigenvalue 0 :

w=1—Re(H),

w € [0,2]

["Analyse fréquentielle et filtrage sur graphes dirigés", Sevi et al., GRETSI, 2017]

p. 8

Conclusion



Introduction Digraph FT Parametric Modeling Numerical explorations Conclusion
[e]e]e} [e]e]ee] } (e]e} 0000000 [e]

Summary of the proposed framework

Graphe cyclic undirected directed
Fourier Mode et iz 13
Operator L P
Frequency w Ak w=1—Re(d)
Variation (0, L) (&, Lair)
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Parametric modeling
Problem formulation
e Model a signal, eg., for compression or inpainting
o Assumption: a partial observation y of f

Objective
e Estimate the missing data points from y

Dataset of test: Political Blogs US 2004 [Adamic et al., 2004]

¢ Node : a blog
3 e Edge : hyperlink from a blog to
e another
M e Signal : political side (Republican /
Democrat).
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Solution of the problem

We observe Y = e«fx, where the e, = 1 if known, else 0
Decide upon a reference operator, noted R, first R =P or A
Model the signal thanks to a parametric graph filter H:

K
H(0) =) 6R", o eR. (1)
Parameter estimation
. K
6= argmin E {Hf -3 eknkyni}, 2)
6={6}f_,RKH k=0

(that has well-known solution)

Signal model :
K

= S GRtY

k=0
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Experimental results (1)
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Alternative Reference Operator (1)

Other Reference operators R could be used :

o P*, associated to the time reversed random walk: P* = II-'P " II.

o P, the additive reversibilization of P: P = P +2P :

Prop.: P, P*, P lead all to DiGFT with frequency related to Variations
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Alternative Reference Operator (2)

o P*, associated to the time reversed random walk: P* = TI"'P T II.

o P, the additive reversibilization of P: P = P J;P )

Generalization: convex combination between P and P*

P.=(1—a)P+aP”
fora € [0, 1].

Prop.: P, leads all to DiGFT with frequency related to Variations
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Experimental results (3)
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Further numerical explorations

Results depends on the sampling law for e
where Yy = exfi

A limit of choosing P: it requires a strongly connected graph...
1) use connected components,
or 2) modify the graph

e add a small rank-one perturbation (Cons: non-sparse)
e construct the “google” matrix: complete dangling nodes (i.e., nodes with
doUt = 0) and then add a probability of jumping anywhere

Conclusion
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Experimental results (4)
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Conclusion

Use of GSP on directed graphs

A full framework to generalize Laplacian-based approaches to digraphs,
- using random walk (or generalisations P, ) as Reference operator
- and L4 to measure variations and define frequency

A numerical exploration around the task of signal modeling

More developments:
spectral wavelets and diffusion wavelets with P on digraphs

Contact and more information:

http://perso.ens-lyon.fr/pierre.borgnat
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