Sparse Discriminative Tensor Dictionary Learning for Object Classification

Seyyid Emre Sofuoglu, Selin Aviyente

Department of Electrical and Computer Engineering, Michigan State University

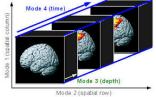
November 27, 2018

Overview

- Introduction
 - Related work
- Methods
 - Sparse Discriminative TDL
 - Optimization
 - Classification
- Results
 - Datasets
 - Experimental Results
 - Discussion
- Conclusions

Introduction

- Higher-order datasets are encountered in
 - Computer vision: Grey level images and image sequences.
 - Neuroimaging: Electroencephalogram (EEG) recordings or functional magnetic resonance imaging (fMRI) data.

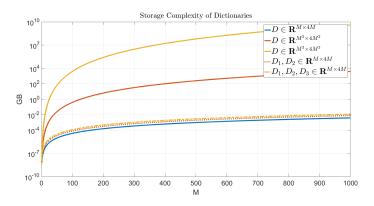


• Remote sensing: Hyperspectral images or videos.

- To be able to classify these data, supervised tensor learning approaches are necessary.
- Some existing works are MPCA-LDA, DATER, DGTDA, CMDA.

Dictionary Learning (DL)

- DL has proven to be effective for many applications: Data recovery, denoising and compression
- Complexity of the model increases exponentially with increasing dimensionality.
- DL has also been employed in supervised learning:
 - Discriminative K-SVD [Zhang & Li, 2010], Label Consistent K-SVD [Jiang et.al., 2013], Sparse Representation Based Classification (SRC) [Wright et.al., 2009], etc.



Memory requirements in order to store overcomplete dictionaries for 1D, 2D, and 3D signals (tensors)(N=1, 2, 3). Here M is defined as the size of each mode of input signal.

• Tensor dictionary learning models are proposed for various problems but discriminative approaches were not deeply pursued.

Tensor Dictionary Learning

- Tensor extensions to well-known DL methods: T-MOD and K-HOSVD [Roemer et. al., 2014].
 - ⇒ Not efficient
- Discriminative TDL: [Zubair et. al., 2014] and [Wu et. al., 2017]
 - \Rightarrow Do not enforce sparsity of representations
 - ⇒ Learn overcomplete dictionaries
- Orthogonal TDL: [Quan et. al., 2015]
 - ⇒ Decrease computational complexity
 - ⇒ Not a supervised approach
- Propose an efficient orthogonal and discriminative DL method with sparsity constraints.

Objective

- Given a set of observed tensors $\mathcal{Y}_c^k \in \mathbb{R}^{I_1 \times I_2 \times I_3}$ where $c \in \{1, \dots, C\}$ denotes the class label and $k \in \{1, \dots, K_c\}$ denotes the sample index for each class c, define $\mathcal{Y}_c \in \mathbb{R}^{I_1 \times I_2 \times I_3 \times K_c}$ as the collection of all \mathcal{Y}_c^k .
- We aim to learn dictionaries for each class and mode, $D_c^{(n)} \in \mathbb{R}^{l_n \times l_n}$ such that $D_c^{(n)^\top} D_c^{(n)} = I$ and the dictionaries provide:
 - Objection in the property of the property o

$$S_{w}^{(n)} = \sum_{c=1}^{C} \sum_{k=1}^{K_{c}} \left[(\mathcal{Y}_{c}^{k} - \mathcal{M}_{c}) \prod_{\substack{m \in \{1,2,3\} \\ m \neq n}} \times_{m} D_{c}^{(m)^{\top}} \right]_{(n)} \left[(\mathcal{Y}_{c}^{k} - \mathcal{M}_{c}) \prod_{\substack{m \in \{1,2,3\} \\ m \neq n}} \times_{m} D_{c}^{(m)^{\top}} \right]_{(n)}^{\top}.$$

Objective

- Given a set of observed tensors $\mathcal{Y}_c^k \in \mathbb{R}^{I_1 \times I_2 \times I_3}$ where $c \in \{1, \dots, C\}$ denotes the class label and $k \in \{1, \dots, K_c\}$ denotes the sample index for each class c, define $\mathcal{Y}_c \in \mathbb{R}^{I_1 \times I_2 \times I_3 \times K_c}$ as the collection of all \mathcal{Y}_c^k .
- We aim to learn dictionaries for each class and mode, $D_c^{(n)} \in \mathbb{R}^{l_n \times l_n}$ such that $D_c^{(n)^\top} D_c^{(n)} = I$ and the dictionaries provide:
 - Oiscriminability: Minimize within-class scatter:

$$S_{w}^{(n)} = \sum_{c=1}^{C} \sum_{k=1}^{K_{c}} \left[(\mathcal{Y}_{c}^{k} - \mathcal{M}_{c}) \prod_{\substack{m \in \{1,2,3\} \\ m \neq n}} \times_{m} \mathcal{D}_{c}^{(m)\top} \right]_{(n)} \left[(\mathcal{Y}_{c}^{k} - \mathcal{M}_{c}) \prod_{\substack{m \in \{1,2,3\} \\ m \neq n}} \times_{m} \mathcal{D}_{c}^{(m)\top} \right]_{(n)}.$$

Sparsity: Minimize reconstruction error with a constraint on the sparsity of the projection:

$$\|\mathcal{Y}_c^k - \mathcal{X}_c^k \prod_{n=1}^3 \times_n D_c^{(n)}\|_F^2 \quad \text{is equivalent to} \quad \|\mathcal{Y}_c^k \prod_{n=1}^3 \times_n D_c^{(n)^\top} - \mathcal{X}_c^k\|_F^2,$$

where $\mathcal{X}_c^k \in \mathbb{R}^{l_1 \times l_2 \times l_3}$ are the sparse representations.

Sparse Disriminant Tensor Dictionary Learning (SDTDL)

 Combining reconstruction and discrimination terms, the optimization function with constraints is:

$$\operatorname*{argmin}_{\mathcal{X}_{C}, D_{c}^{(1)}, D_{c}^{(2)}, D_{c}^{(3)}} \sum_{k=1}^{K_{c}} \| \mathcal{Y}_{c}^{k} - \mathcal{X}_{c}^{k} \prod_{n=1}^{3} \times_{n} D_{c}^{(n)} \|_{F}^{2} + \lambda \sum_{n=1}^{3} \operatorname{tr}(D_{c}^{(n)} \top S_{w}^{(n)} D_{c}^{(n)}) \quad , \| \mathcal{X}_{c}^{k} \|_{0} \leq \tau \quad , \forall c, k, \quad (1)$$

where $\mathcal{X}_c \in \mathbb{R}^{l_1 \times l_2 \times l_3 \times \mathcal{K}_c}$ is the collection of all \mathcal{X}_c^k .

 Non-convex problem: However, it can be solved for each class and each variable, separately.

Sparse Disriminant Tensor Dictionary Learning (SDTDL)

 Combining reconstruction and discrimination terms, the optimization function with constraints is:

$$\operatorname*{argmin}_{\mathcal{X}_{c}, D_{c}^{(1)}, D_{c}^{(2)}, D_{c}^{(3)}, D_{c}^{(3)}} \sum_{k=1}^{K_{c}} \|\mathcal{Y}_{c}^{k} - \mathcal{X}_{c}^{k} \prod_{n=1}^{3} \times_{n} D_{c}^{(n)}\|_{F}^{2} + \lambda \sum_{n=1}^{3} \operatorname{tr}(D_{c}^{(n)} \top S_{w}^{(n)} D_{c}^{(n)}) \quad , \|\mathcal{X}_{c}^{k}\|_{0} \leq \tau \quad , \forall c, k, \quad (1)$$

where $\mathcal{X}_c \in \mathbb{R}^{l_1 \times l_2 \times l_3 \times \mathcal{K}_c}$ is the collection of all \mathcal{X}_c^k .

- Non-convex problem: However, it can be solved for each class and each variable, separately.
- **1** Initialize dictionaries $D_c^{(i)}$.
- ② Update sparse representations, \mathcal{X}_c^k . Keep τ highest values of $\mathcal{Y}_c^k \prod_{n=1}^3 \times_n D_c^{(n)^\top}$ and set the rest to zero.
- ① Update dictionary $D_c^{(n)}$ while fixing all other dictionaries $D_c^{(m)}$ and \mathcal{X}_c .

Optimization

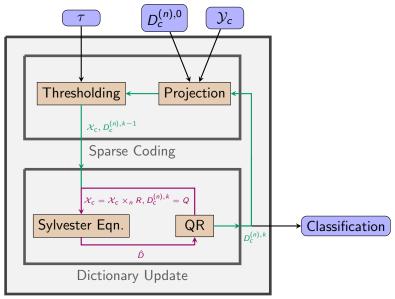
• Updating $D_c^{(n)}$: Since all other variables are fixed, taking the derivative of reconstruction and scatter terms is enough.

$$D_c^{(n)} \mathcal{C}_{(n)} \mathcal{C}_{(n)}^{\top} + \lambda S_w^{(n)} D_c^{(n)} = Y_{c_{(n)}} \mathcal{C}_{(n)}^{\top}, \tag{2}$$

where

$$C_{(n)} = (\mathcal{X}_c \prod_{\substack{m \in \{1,2,3\} \\ m \neq n}} \times_m D_c^{(m)^\top})_{(n)}.$$

- (2) is a Sylvester equation that is easily solved, but does not guarantee orthogonality.
- Thus, we apply QR decomposition to the solution of (2) $\hat{D} = QR$ and set the dictionary as $D_c^{(n)} = Q$.
- Then, the sparse representation is updated for the same mode as $\mathcal{X}_c \leftarrow \mathcal{X}_c \times_n R$.



Sparse Discriminative Tensor Dictionary Learning

Classification

- To classify a test sample \mathcal{Y}^t , we find sparse representations \mathcal{X}_c^t with respect to each class using learned dictionaries D_c .
- *C* different sparse representations for each test sample.
- Find the class which has the closest sparse representation:

$$I = \underset{c}{\operatorname{argmin}} \{ \underset{k}{\min} (\|\mathcal{X}_{c}^{k} - \mathcal{X}_{c}^{t}\|_{F}^{2}) \}, \tag{3}$$

Computational Complexity

- Assume $l_1 = l_2 = \cdots = l_N = l$, $K_c = K, \forall c, c \in \{1, \dots, C\}$. Given inputs $\mathcal{Y}_c^k \in \mathbb{R}^{l_1 \times l_2 \times \cdots \times l_N}$, the training cost per iteration:
 - **①** Computational cost of extracting \mathcal{X}_c : $\mathcal{O}(NKI^{N+1})$ per class.
 - Computational cost of learning $D_c^{(n)}$: $\mathcal{O}((CN+N+1)NKI^{N+1})$, for all classes and modes.
 - **3** Total computational cost is $\mathcal{O}\left((CN+C+N+1)NKI^{N+1}\right)$.
- The computational cost of MPCA is $\mathcal{O}((N+1)CKNI^{N+1})$.
- The cost is governed by Tensor-to-Matrix multiplications.
- The storage cost of SDTDL is $\mathcal{O}(NCI^2 + 2CK\tau)$, while the storage cost of MPCA (assuming all ranks are $\tau^{1/N}$) is $\mathcal{O}(NI\tau^{1/N} + CK\tau)$.

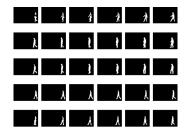
Datasets

• **COIL-100**: 100 objects with size 128 × 128, 72 images corresponding to pose angles. 16 non-overlapping patches of size 16 × 16:

$$\Rightarrow \mathcal{Y}_c^k \in \mathbb{R}^{16 \times 16 \times 16}$$

Sample images from COIL-100 Dataset.

• CASIA Gait Dataset A: 4 sequences, 3 directions, 20 subjects. Image size 240×352 . From sequences of size $60 \times 88 \times 50$, 200 patches of size $15 \times 20 \times 16$: $\Rightarrow \mathcal{Y}_{c}^{k} \in \mathbb{R}^{15 \times 20 \times 16 \times 200}$



Sample sequences from CASIA-GAIT Dataset.

Experiments

- Hold-out ratio is $r = N_{trn}/N_{ttl}\%$ where N_{trn} is the number of training samples and N_{ttl} is the total number of samples.
- The sparsity level, σ , is the ratio of the number of nonzero terms to total number of elements in each sample.

Comparison of Accuracy of Algorithms on COIL-100 Dataset.

Algorithms	Hold-out ratios (%)				
10 Class ($\sigma = 0.031$)	1.4	2.8	25	50	
SDTDL	70.21 ± 6.51	76.11 ± 4.17	97.00 ± 1.82	99.19 ± 0.50	
MPCA	67.86 ± 5.76	74.70 ± 3.39	96.78 ± 2.37	98.92 ± 0.79	
DGTDA		74.3 ± 3.06	95.6 ± 1.5	99 ± 0.604	
CMDA		70.9 ± 3.72	94.2 ± 1.72	98.4 ± 0.541	
20 Class ($\sigma = 0.047$)	1.4	2.8	25	50	
SDTDL	60.51 ± 3.45	72.61 ± 3.35	95.91 ± 2.02	99.22 ± 0.75	
MPCA	59.24 ± 4.59	69.54 ± 3.53	93.75 ± 3.53	98.17 ± 1.20	
DGTDA		71.8 ± 2.07	95.8 ± 0.642	98.9 ± 0.219	
CMDA		68.9 ± 2.08	95.1 ± 0.728	98.6 ± 0.31	

Comparison of Accuracy of Algorithms on CASIA Gait Dataset A. ($\sigma=0.01$)

%	Hold-out ratios (%)					
Algorithms	12.5	25	50			
SDTDL	92.48 ± 5.36	96.78 ± 2.54	98.67 ± 1.53			
MPCA	90.76 ± 5.22	95.89 ± 1.58	98.17 ± 1.66			
DGTDA	76.3 ± 3.5	96.4 ± 0.945	$\textbf{99.4} \pm 0.435$			
CMDA	69 5 + 4 45	94.8 ± 1.13	99.2 ± 0.48			

Discussion

- Effect of Discriminability (r = 1.4%, $\sigma = 0.031$, COIL 10 classes): 67.55 ± 4.89 vs 69.35 ± 5.85 .
- Effect of Sparsity: Increasing the number of non-zero elements lowers the accuracy.
- SDTDL outperforms other methods especially when the number of training samples is small.

Conclusions

- Proposed a sparse discriminative tensor dictionary learning algorithm for tensor-type object classification.
- Combination of reconstruction error and discrimination power to learn orthogonal and separable dictionaries for each class.
- Orthogonality and separability make the training efficient compared to learning overcomplete dictionaries.
- Higher classification accuracy compared to MPCA and MDA.

Thanks for listening!