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Introduction

Higher-order datasets are encountered in

Computer vision: Grey level images and image sequences.
Neuroimaging: Electroencephalogram (EEG) recordings or functional
magnetic resonance imaging (fMRI) data.

Remote sensing: Hyperspectral images or videos.

To be able to classify these data, supervised tensor learning
approaches are necessary.

Some existing works are MPCA-LDA, DATER, DGTDA, CMDA.
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Dictionary Learning (DL)

DL has proven to be effective for many applications: Data recovery,
denoising and compression

Complexity of the model increases exponentially with increasing
dimensionality.

DL has also been employed in supervised learning:

Discriminative K-SVD [Zhang & Li, 2010], Label Consistent
K-SVD [Jiang et.al., 2013], Sparse Representation Based
Classification (SRC) [Wright et.al., 2009], etc.
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Memory requirements in order to store overcomplete dictionaries for 1D, 2D, and 3D signals (tensors)(N=1, 2, 3).
Here M is defined as the size of each mode of input signal.

Tensor dictionary learning models are proposed for various problems
but discriminative approaches were not deeply pursued.
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Tensor Dictionary Learning

Tensor extensions to well-known DL methods: T-MOD and
K-HOSVD [Roemer et. al., 2014].
⇒ Not efficient

Discriminative TDL: [Zubair et. al., 2014] and [Wu et. al.,
2017]
⇒ Do not enforce sparsity of representations
⇒ Learn overcomplete dictionaries

Orthogonal TDL: [Quan et. al., 2015]
⇒ Decrease computational complexity
⇒ Not a supervised approach

Propose an efficient orthogonal and discriminative DL method
with sparsity constraints.
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Objective

Given a set of observed tensors Yk
c ∈ RI1×I2×I3 where c ∈ {1, . . . ,C}

denotes the class label and k ∈ {1, ...,Kc} denotes the sample index
for each class c , define Yc ∈ RI1×I2×I3×Kc as the collection of all Yk

c .

We aim to learn dictionaries for each class and mode, D
(n)
c ∈ RIn×In

such that D
(n)>

c D
(n)
c = I and the dictionaries provide:

1 Discriminability: Minimize within-class scatter:

S(n)
w =

C∑
c=1

Kc∑
k=1

(Yk
c −Mc )

∏
m∈{1,2,3}

m 6=n

×mD(m)>
c


(n)

(Yk
c −Mc )

∏
m∈{1,2,3}

m 6=n

×mD(m)>
c


(n)

>

.

2 Sparsity: Minimize reconstruction error with a constraint on
the sparsity of the projection:

‖Yk
c −X k

c

3∏
n=1

×nD
(n)
c ‖2

F is equivalent to ‖Yk
c

3∏
n=1

×nD
(n)>

c −X k
c ‖2

F ,

where X k
c ∈ RI1×I2×I3 are the sparse representations.
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Sparse Disriminant Tensor Dictionary Learning (SDTDL)

Combining reconstruction and discrimination terms, the
optimization function with constraints is:

argmin

Xc ,D
(1)
c ,D

(2)
c ,D

(3)
c

Kc∑
k=1

‖Yk
c − X

k
c

3∏
n=1

×nD
(n)
c ‖

2
F + λ

3∑
n=1

tr(D(n)
c
>
S(n)
w D(n)

c ) , ‖X k
c ‖0 ≤ τ , ∀c, k, (1)

where Xc ∈ RI1×I2×I3×Kc is the collection of all X k
c .

Non-convex problem: However, it can be solved for each class
and each variable, separately.

1 Initialize dictionaries D
(i)
c .

2 Update sparse representations, X k
c . Keep τ highest values of

Yk
c

∏3
n=1×nD

(n)
c

>
and set the rest to zero.

3 Update dictionary D
(n)
c while fixing all other dictionaries D

(m)
c and

Xc .
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Optimization

Updating D
(n)
c : Since all other variables are fixed, taking the

derivative of reconstruction and scatter terms is enough.

D(n)
c C(n)C>(n) + λS (n)

w D(n)
c = Yc(n)

C>(n), (2)

where
C(n) = (Xc

∏
m∈{1,2,3}

m 6=n

×mD
(m)
c

>
)(n).

(2) is a Sylvester equation that is easily solved, but does not
guarantee orthogonality.

Thus, we apply QR decomposition to the solution of (2) D̂ = QR

and set the dictionary as D
(n)
c = Q.

Then, the sparse representation is updated for the same mode as
Xc ← Xc ×n R.
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Thresholding Projection

D
(n),0
c Ycτ

Sylvester Eqn. QR Classification

Sparse Discriminative Tensor Dictionary Learning

Sparse Coding

Dictionary Update

Xc ,D
(n),k−1
c

D̂

Xc = Xc ×n R,D
(n),k
c = Q

D
(n),k
c
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Classification

To classify a test sample Yt , we find sparse representations
X t
c with respect to each class using learned dictionaries Dc .

C different sparse representations for each test sample.

Find the class which has the closest sparse representation:

l = argmin
c
{min

k
(‖X k

c −X t
c ‖2

F )}, (3)
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Computational Complexity

Assume I1 = I2 = · · · = IN = I , Kc = K ,∀c , c ∈ {1, . . . ,C}. Given
inputs Yk

c ∈ RI1×I2×···×IN , the training cost per iteration:

1 Computational cost of extracting Xc : O(NKIN+1) per class.
2 Computational cost of learning D

(n)
c :

O((CN + N + 1)NKIN+1), for all classes and modes.
3 Total computational cost is O

(
(CN + C + N + 1)NKIN+1

)
.

The computational cost of MPCA is O
(
(N + 1)CKNIN+1

)
.

The cost is governed by Tensor-to-Matrix multiplications.

The storage cost of SDTDL is O(NCI 2 + 2CKτ), while the storage
cost of MPCA (assuming all ranks are τ 1/N) is O(NI τ 1/N + CKτ).
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Datasets

COIL-100: 100 objects with
size 128× 128, 72 images
corresponding to pose angles.
16 non-overlapping patches of
size 16× 16:
⇒ Yk

c ∈ R16×16×16

CASIA Gait Dataset A: 4
sequences, 3 directions, 20
subjects. Image size
240× 352. From sequences of
size 60× 88× 50, 200 patches
of size 15× 20× 16:
⇒ Yk

c ∈ R15×20×16×200

Sample images from COIL-100 Dataset. Sample sequences from CASIA-GAIT Dataset.
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Experiments

Hold-out ratio is r = Ntrn/Nttl% where Ntrn is the number of
training samples and Nttl is the total number of samples.

The sparsity level, σ, is the ratio of the number of nonzero terms to

total number of elements in each sample.
Comparison of Accuracy of Algorithms on COIL-100 Dataset.

Algorithms Hold-out ratios (%)

10 Class (σ = 0.031) 1.4 2.8 25 50

SDTDL 70.21 ± 6.51 76.11 ± 4.17 97.00 ± 1.82 99.19 ± 0.50
MPCA 67.86 ± 5.76 74.70 ± 3.39 96.78 ± 2.37 98.92 ± 0.79

DGTDA 74.3± 3.06 95.6± 1.5 99± 0.604
CMDA 70.9± 3.72 94.2± 1.72 98.4± 0.541

20 Class (σ = 0.047) 1.4 2.8 25 50

SDTDL 60.51 ± 3.45 72.61 ± 3.35 95.91 ± 2.02 99.22 ± 0.75
MPCA 59.24 ± 4.59 69.54 ± 3.53 93.75 ± 3.53 98.17 ± 1.20

DGTDA 71.8± 2.07 95.8± 0.642 98.9± 0.219
CMDA 68.9± 2.08 95.1± 0.728 98.6± 0.31

Comparison of Accuracy of Algorithms on CASIA Gait Dataset A. (σ = 0.01)

% Hold-out ratios (%)

Algorithms 12.5 25 50

SDTDL 92.48 ± 5.36 96.78 ± 2.54 98.67 ± 1.53
MPCA 90.76 ± 5.22 95.89 ± 1.58 98.17 ± 1.66

DGTDA 76.3± 3.5 96.4± 0.945 99.4± 0.435
CMDA 69.5± 4.45 94.8± 1.13 99.2± 0.48
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Discussion

Effect of Discriminability (r = 1.4%, σ = 0.031, COIL 10
classes):
67.55± 4.89 vs 69.35± 5.85.

Effect of Sparsity: Increasing the number of non-zero
elements lowers the accuracy.

SDTDL outperforms other methods especially when the
number of training samples is small.



Introduction Methods Results Conclusions

Conclusions

Proposed a sparse discriminative tensor dictionary learning
algorithm for tensor-type object classification.

Combination of reconstruction error and discrimination power
to learn orthogonal and separable dictionaries for each class.

Orthogonality and separability make the training efficient
compared to learning overcomplete dictionaries.

Higher classification accuracy compared to MPCA and MDA.
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Thanks for listening!
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