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Introduction

Introduction

@ Higher-order datasets are encountered in

@ Computer vision: Grey level images and image sequences.
@ Neuroimaging: Electroencephalogram (EEG) recordings or functional
magnetic resonance imaging (fMRI) data.
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Remote sensing: Hyperspectral images or videos.
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@ To be able to classify these data, supervised tensor learning
approaches are necessary.
@ Some existing works are MPCA-LDA, DATER, DGTDA, CMDA.
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Dictionary Learning (DL)

@ DL has proven to be effective for many applications: Data recovery,
denoising and compression
@ Complexity of the model increases exponentially with increasing
dimensionality.
@ DL has also been employed in supervised learning:
o Discriminative K-SVD [Zhang & Li, 2010], Label Consistent
K-SVD [Jiang et.al., 2013], Sparse Representation Based
Classification (SRC) [Wright et.al., 2009], etc.
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Storage Complexity of Dictionaries
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Memory requirements in order to store overcomplete dictionaries for 1D, 2D, and 3D signals (tensors)(N=1, 2, 3).
Here M is defined as the size of each mode of input signal.

@ Tensor dictionary learning models are proposed for various problems
but discriminative approaches were not deeply pursued.
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Tensor Dictionary Learning

@ Tensor extensions to well-known DL methods: T-MOD and
K-HOSVD [Roemer et. al., 2014].
= Not efficient

e Discriminative TDL: [Zubair et. al., 2014] and [Wu et. al.,
2017]
= Do not enforce sparsity of representations
= Learn overcomplete dictionaries

@ Orthogonal TDL: [Quan et. al., 2015]
= Decrease computational complexity
= Not a supervised approach

@ Propose an efficient orthogonal and discriminative DL method
with sparsity constraints.
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Objective

@ Given a set of observed tensors VX € Rhi*2%k where c € {1,..., C}
denotes the class label and k € {1, ..., K.} denotes the sample index
for each class c, define Y. € Ri*2xbxKe 55 the collection of all YX.

@ We aim to learn dictionaries for each class and mode, D™ & Rl*n

such that D{" n’ D™ — | and the dictionaries provide:
@ Discriminability: Minimize within-class scatter:
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@ Sparsity: Minimize reconstruction error with a constraint on
the sparsity of the projection:

3 3
|VE=XLT] a7 is equivalent to [|VE]] XD —xk|2,
n=1 n=1

where XX € Ri*Exh jre the sparse representations.
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Sparse Disriminant Tensor Dictionary Learning (SDTDL)

@ Combining reconstruction and discrimination terms, the
optimization function with constraints is:

argmin Zuy —ak Hx Y |\F+)\Ztr Tsp™y  xkly <+ Ve k (1)
%000 p@ o) kS
where X € RhixExlxKe s the collection of all XX.

@ Non-convex problem: However, it can be solved for each class
and each variable, separately.
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Sparse Disriminant Tensor Dictionary Learning (SDTDL)

@ Combining reconstruction and discrimination terms, the
optimization function with constraints is:

argmin ZHJ] —X HX D HFJF)‘Z" (n Wann)) 7||.X‘f||0§7' , Ve, k, (1)
XC,DEI) D( ) D(3 k=1

where X € RhixExlxKe s the collection of all XX.

@ Non-convex problem: However, it can be solved for each class
and each variable, separately.

@ Initialize dictionaries Dgi).
@ Update sparse representations, XK. Keep 7 highest values of
Yk Hn | X Dﬁ") and set the rest to zero.

© Update dictionary Dg") while fixing all other dictionaries ng) and
Xe.
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Optimization

o Updating D{": Since all other variables are fixed, taking the
derivative of reconstruction and scatter terms is enough.

DCC Ly + ASEDI) = Yo, Cloys
where T
C(n) = (XC H meém) )(n)
me{1,2,3}
m#n

@ (2) is a Sylvester equation that is easily solved, but does not
guarantee orthogonality.

N

@ Thus, we apply QR decomposition to the solution of (2) D =
and set the dictionary as D" = Q.

QR

@ Then, the sparse representation is updated for the same mode as

X & xp R.
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Classification

@ To classify a test sample YV, we find sparse representations
X! with respect to each class using learned dictionaries D..

o C different sparse representations for each test sample.

@ Find the class which has the closest sparse representation:

I = argmin{mkin(ll?fck - X{B) (3)
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Computational Complexity

@ Assume h=h=---=Iy=1 K.=K,Vc, ce{1,...,C}. Given
inputs YK € RhxEXxIv the training cost per iteration:

© Computational cost of extracting X,.: O(NKIN+1) per class.

@ Computational cost of learning Dt(;”):
O((CN + N + 1)NKIN*1) for all classes and modes.
© Total computational cost is O ((CN + C + N + 1)NKINT1).

@ The computational cost of MPCA is O ((N + 1) CKNIV+1).

@ The cost is governed by Tensor-to-Matrix multiplications.

@ The storage cost of SDTDL is O(NCI? + 2CKT), while the storage
cost of MPCA (assuming all ranks are 72/V) is O(NITY/N + CKT).



Datasets

@ COIL-100: 100 objects with
size 128 x 128, 72 images
corresponding to pose angles.
16 non-overlapping patches of
size 16 x 16:
= Yk ¢ R16x16x16
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Sample images from COIL-100 Dataset.
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@ CASIA Gait Dataset A: 4
sequences, 3 directions, 20
subjects. Image size

240 x 352. From sequences of
size 60 x 88 x 50, 200 patches

of size 15 x 20 x 16:
— Pk ¢ RI5x20x16x200
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Sample sequences from CASIA-GAIT Dataset.
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Experiments

@ Hold-out ratio is r = N,/ Niy% where Ny, is the number of
training samples and Ny is the total number of samples.

@ The sparsity level, o, is the ratio of the number of nonzero terms to
total number of elements in each sample.

Comparison of Accuracy of Algorithms on COIL-100 Dataset.

Algorithms Hold-out ratios (%)

10 Class (o = 0.031) 12 28 % 50
SDTDL 70.21 + 6.51 | 76.11 + 4.17 | 97.00 + 1.82 | 99.19 + 0.50
MPCA 67.86 4+ 5.76 | 74.70 & 3.39 | 96.78 + 2.37 | 98.92 + 0.79
DGTDA 74.3 + 3.06 95.6 £ 15 99 +0.604
CMDA 70.9 +3.72 942+ 1.72 98.4 +0.541

20 Class (o = 0.047) 14 28 % 50
SDTDL 60.51 + 3.45 | 72.61 + 3.35 | 95.91 + 2.02 | 99.22 + 0.75
MPCA 59.24 4 459 | 69.54 & 3.53 | 93.75 £ 3.53 | 98.17 + 1.20
DGTDA 71.8+2.07 95.8+0.642 | 98.9+0.219
CMDA 68.9+2.08 95.1+0.728 98.6 +£0.31

Comparison of Accuracy of Algorithms on CASIA Gait Dataset A. (o = 0.01)

% Hold-out ratios (%)

Algorithms 125 25 50
SDTDL 92.48 +5.36 | 96.78 + 2.54 | 98.67 + 1.53
MPCA 90.76 = 5.22 | 95.89 + 1.58 | 98.17 &+ 1.66
DGTDA 76.3+3.5 96.4£0.945 | 99.4 +£0.435
CMDA 69.5 + 4.45 94.8+1.13 99.2+0.48
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Discussion

o Effect of Discriminability (r = 1.4%, 0 = 0.031, COIL 10
classes):
67.55 £ 4.89 vs 69.35 + 5.85.

o Effect of Sparsity: Increasing the number of non-zero
elements lowers the accuracy.

@ SDTDL outperforms other methods especially when the
number of training samples is small.
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Conclusions

@ Proposed a sparse discriminative tensor dictionary learning
algorithm for tensor-type object classification.

@ Combination of reconstruction error and discrimination power
to learn orthogonal and separable dictionaries for each class.

@ Orthogonality and separability make the training efficient
compared to learning overcomplete dictionaries.

@ Higher classification accuracy compared to MPCA and MDA.



Thanks for listening!
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