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Motivation / Problem Description

Problem Description
Goal:

Estimate dynamics and dimensions of an unknown number of targets in real-time
Associate measurements to correct target

Challenges:
Multiple measurements of one target
Unknown number of targets
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Temporally-Dependent Dirichlet Process Mixture Model

Dirichlet Process

Bayesian non-parametric model

It is a distribution over distributions with an infinite amount of mixture components

Only finite ones are activated by observations

Defined by a concentration parameter α ∈ R and random mixing measure G0
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Temporally-Dependent Dirichlet Process Mixture Model

Chinese Restaurant Process

Realization of a DP

Either: new customer (measurement) chooses new table (component) proportional to
α

Or: joins known table with probability proportional to the number of occupying
customers

⇒ Conditional prior, with nk(t) – the number of assigned measurements to cluster k [1]:

CRP (α) =
{

nk(t)
i−1+α k ∈ Kt,
α

i−1+α else
. (1)
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Temporally-Dependent Dirichlet Process Mixture Model

Example of CRP

CRP (α) for assignment of customer C5 with α = 0.1:
Table 1: 3

5−1+0.1 = 0.73
Table 2: 1

5−1+0.1 = 0.24
New Table: 0.1

5−1+0.1 = 0.024

Table 1 Table 2C1 C2C3

C4
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Temporally-Dependent Dirichlet Process Mixture Model

Distance-Dependent CRP I

Links customers to customers rather than tables

Conditional prior, with link assignment ji(t) and set of previous assignments ji [2]:

p(ji(t) = l|j−i, α) =
{
dil(yi(t),yl(t)) i 6= l,

α i = l
, (2)
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Temporally-Dependent Dirichlet Process Mixture Model

Distance-Dependent CRP II

Table 1 Table 2C1 C2

C4

C3

C2C1 C3 C4
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Temporally-Dependent Dirichlet Process Mixture Model

Grid Example for Distance-Dependent CRP

?

1 1 ?

1 1
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Temporally-Dependent Dirichlet Process Mixture Model

Data to Cluster Assignment

Can be interpreted as a cluster prior dependent on the current cluster parameters

Measurement yi(t) to cluster k assignment [1]:

πzi(t)=k = p (zi(t) = k|z(t− 1),yi(t))
= p(yi(t)|θk(t)) · p (zi(t) = k|z(t− 1)) , (3)
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Temporally-Dependent Dirichlet Process Mixture Model

Cluster Prior Examples
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Temporally-Dependent Dirichlet Process Mixture Model

Kalman Filtering

Kalman Filtering is used for the dynamical part x ∈ Rn of the mixture components

Probabilistic Gaussian state space model, with transition matrix Φ(t− 1) ∈ Rn×n,
measurement model matrix C(t) ∈ Rm×n, unbiased and Gaussian process noise
Q(t− 1) and Gaussian measurement noise R(t) [3]:

p(x(t)|x(t− 1)) = N (x(t)|Φ(t− 1)x(t− 1),Q(t− 1)) (4)

p(y(t)|x(t)) = N (y(t)|C(t)x(t),R(t)) , (5)
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Greedy Dirichlet Process Filter
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Greedy Dirichlet Process Filter

Basic Procedure

Greedy Dirichlet Process Filter (GDPF) consists of the following two main steps:

Choosing best label for measurement yi
Update posterior distribution
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Greedy Dirichlet Process Filter

Choosing the Best Label

Conditional posterior probability of assigning measurement yi(t) to cluster k given
previous data for measurements Y i(t) is a combination of distance-dependent CRP
and data to cluster assignment

Conditional posterior probabilities [1]:

p
(
zi(t) = k|Y i(t), j−i, z(t− 1)

)
=

p(ji = lk|j−i, α) · πzi(t)=k∑
m∈Kt

p(ji = lm|j−i, α) · πzi(t)=m
. (6)
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Greedy Dirichlet Process Filter

Posterior Update

Posterior distribution of cluster parameters consists of:
Generation of new components: G0(θzi(t)=k(t))
Dynamical part: p(yi(t)|θzi(t)=k(t))
Time evolution of cluster parameters: p(θzi(t)=k(t)|θzi(t−1)=k(t− 1))

It follows [1]:

p(θzi(t)|yi−1(t), z(t)) ∝ G0(θzi(t)=k(t))
· p(yi(t)|θzi(t)=k(t))
· p(θzi(t)=k(t)|θzi(t−1)=k(t− 1)), (7)
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Evaluation & Results
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Evaluation & Results

Test Scenario

Real-world scenario in the suburbs near our university

Passing cars as dynamic objects

Ground truth obtained with an installed INS-sensor

Goal: Estimate x- and y-position of our ground-truth object without id-switches
Tested against:

Labeled Multi-Bernoulli Filter (LMB) [4]
Generalized-LMB (GLMB) [5]
Classical Single-Object Filter approach with underlying track management (BuTd) [6]
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Evaluation & Results

Comparing the Trajectories
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Filter RMSE id-switches
GDPF (bbox) 0.63657 0
GDPF (grid) 0.89681 2

LMB 62.729 69
LMB (low det) 3.539 33

GLMB (low det) 2.334 5
BuTd 0.68749 31
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Evaluation & Results

ID-switches and Run-time

Run-times for a mean of 193
objects:

Grid: 58ms

Bounding-Boxes: 34ms
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Evaluation & Results

Video Footage of the Test-Drive
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Summary
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Summary

Conclusions and Future Work

Proposed GDPF can robustly track an unknown number of targets

Real-time capable even for a large number of targets

Probabilistic data association can handle segmentation errors and unclustered data

We demonstrated improved tracking results compared to popular approaches

Possible Future work:

Extend to classifying filter to utilize class-specific priors

Modeling the target appearance by integrating extended object tracking
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