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Introduction

Challenges of “Massive” Communications
Extremely large number of UEs
Short-length transmissions
Extremely large signal space

Critical System Design Goal
Employ channel estimation procedures that

provide reliable estimates
are of low complexity
require small training overhead

In this Work:
1 A low-complexity, ANM-based channel estimator for uplink wideband mMIMO is

proposed
2 MSE performance characterized by tight lower bounds
3 Close to optimal for low-to-moderate number of propagation paths
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System Model (1/2)

Single cell, uplink
ULA of M � 1 antennas at BS
Single-antenna UE
OFDM signaling with N � 1 subcarriers
Link characterized by the unknown space-frequency transfer matrix H ∈ CM×N

UE transmits pilot symbols over a set Np ⊆ {0, 1, . . . , N − 1} of Np subcarriers
BS utilizes the observations from a set Mp ⊆ {0, 1, . . . ,M − 1} of Mp antennas

Assumption
Sets Np, Mp are selected randomly and uniformly from {0, 1, . . . , N − 1},
{0, 1, . . . ,M − 1}, respectively

motivated by compressive sensing theory
results in an robust and multiuser-fair design
allows for tractable analysis

Np, Mp are design parameters to be specified
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System Model (2/2)

Observed Mp ×Np signal at the BS (all-ones pilot
symbols):

Y = SMp HSTNp
+ Z

SMp ∈ RMp×M , SNp ∈ RNp×M : downsampling matrices
Z ∈ CMp×Np : : AWGN of variance σ2

sp
a
ce

freq.

Receiver Task
Obtain a low-complexity and accurate estimate of the MN elements of H given the
MpNp < MN observations in Y

Underdetermined linear system

Key concept
Exploit structural properties of the physical channel

Stelios Stefanatos (FUB) Massive MIMO Channel Estimation via ANM GlobalSIP 2018 6 / 21



System Model (2/2)

Observed Mp ×Np signal at the BS (all-ones pilot
symbols):

Y = SMp HSTNp
+ Z

SMp ∈ RMp×M , SNp ∈ RNp×M : downsampling matrices
Z ∈ CMp×Np : : AWGN of variance σ2

sp
a
ce

freq.

Receiver Task
Obtain a low-complexity and accurate estimate of the MN elements of H given the
MpNp < MN observations in Y

Underdetermined linear system

Key concept
Exploit structural properties of the physical channel

Stelios Stefanatos (FUB) Massive MIMO Channel Estimation via ANM GlobalSIP 2018 6 / 21



Parametric Wideband Massive MIMO Channel Model

H[n;m] =
L−1∑
l=0

cle
−i2πmθle−i2πnτl , n ∈ [N ],m ∈ [M ]

L : number of paths
cl ∈ C : gain of lth path
θl ∈ [0, 1] : angle of arrival (AoA) of lth path (normalized)
τl ∈ [0, 1] : delay of lth path (normalized)

θl

Channel described by 3L�MN path parameters {(ρl, θl, τl)}L−1
l=0 in the

angle-delay domain

Maximum Likelihood (ML) detection of path parameters:

{(ĉl, τ̂l, θ̂l)}L−1
l=0 = arg min

{(cl,τl,θl)}L−1
l=0

∥∥Y− SMp HSTNp

∥∥2

NP-hard problem =⇒ suboptimal solutions necessary
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Channel Estimation via Atomic Norm Minimization
Define the atom set (manifold)

A ,
{

fM (θ)fHN (τ) : (θ, τ) ∈ [0, 1]× [0, 1]
}

I fM (θ) , [1, e−i2πθ, . . . , e−i2πθ(M−1)]T and similarly for fN (τ)

Rationale for this set: H =
∑L−1

l=0 clfM (θl)fHN (τl), i.e., H ∈ span(A)

Definition (Atomic Norm)
The atomic norm of an arbitrary matrix X ∈ CM×N w.r.t. A is

‖X‖A , inf
cl ∈ C,

θl, τl ∈ [0, 1]

{∑
l

|cl|

∣∣∣∣∣X =
∑
l

clfM (θ)fHN (τ)

}

Extension of the standard `1-norm

Channel Estimation via Atomic Norm Minimization

Ĥ = argmin
X∈CM×N

{
‖X‖A

∣∣∣‖Y− SMp XSTNp
‖ ≤ ˆ‖Z‖

}
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Why ANM?
Performance Guarantees

Theorem (Informal Statement)
Under (a) noiseless conditions and (b) sufficiently large Np, Mp, perfect recovery of H
can be achieved with high probability as long as channel paths are sufficiently separated
in the delay-angle domain, i.e.,

min
l6=l′

max {|θl − θl′ |, |τl − τl′ |} > d ≈ 1/min {M,N}

a
n
gl
e

delay

d

d

1

1
0

(a) separable paths

a
n
gl
e

delay

d

d

1

1
0

(b) non-separable paths
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Why ANM?
SDP Implementation

Computation of ‖ · ‖A can be formulated as an SDP problem, resulting in a convex
program for obtaining Ĥ:

minimize
Ĥ∈CM×N ,u∈CMN ,t>0

1
2 (tr {T2D(u)}+ t)

subject to
(

T2D(u) vec(Ĥ)
vec(Ĥ)H t

)
� 0,

‖Y− SMp ĤSTNp
‖ ≤ ˆ‖Z‖


T2D(u) ∈ CMN×MN : block Toeplitz matrix
Angle-delay pairs of paths can be estimated from the Vandermonde Decomposition
of T2D(u)

I denoising gains when L is known

Complexity of solution: O(MN)
Impractical when M � 1 and/or N � 1 =⇒ Low-complexity alternatives needed
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Proposed Approach (1/2)

Basic Idea
Decouple the spatial and frequency dimensions, treating them sequentially as Multiple
Measurement Vectors (MMV) estimation problems and apply ANM-based estimation to
each

sp
ac
e

freq.

(a) observation

sp
ac

e
freq.

(b) interpolate over space

sp
a
ce

freq.

(c) interpolate over frequency
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Proposed Approach (2/2)

1 Spatial dimension interpolation:
I Rewrite the observation matrix as Y = SMp HSTNp︸ ︷︷ ︸

,H1

+ Z

I Note that H1 can be written as H1 =
∑L−1

l=0 clfM (θl)bH1,l,b1,l , SNp fN (τl)
I By ignoring the structure of {b1,l} and noise, an estimate of H1 can be obtained as

Ĥ1 = argmin
X∈CM×Np

{
‖X‖AMMV1

∣∣Y = SMp X
}
,

where AMMV1 ,
{

fM (θ)bH1 , θ ∈ [0, 1],b1 ∈ CMp , ‖b1‖2 = 1
}

I Denoise the estimate exploiting that there are L paths
2 Frequency dimension interpolation:

I Repeat the same approach treating now Ĥ1 ∈ CM×Np as the partial observations of
the complete channel matrix with structure H =

∑L−1
l=0 clb2,lfHN (τl)

SDP implementation with complexity order O(M +N)� O(MN)
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Universal MSE Bound

Exact characterization of ANM-based estimation performance extremely difficult
I Resort to bounds

Theorem (Universal Bound)
The per-element MSE of any unbiased estimator of H is lower bounded as

1
MN

E(‖Ĥ−H‖2) ≥ 2Lσ2

MpNp
,

where the expectation is over the statistics of noise, Np, Mp.

bound is looser than the CRLB, i.e., non-achievable, in general
Trade off Np for Mp=⇒ Np ≥ L is not required in massive MIMO
Scales as O(L)
Bound holds with no assumptions on path separability
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MSE Bound for Proposed Algorithm

The following result can serve as an approximation of the MSE performance

Theorem
Under the assumption that the error Ĥ1 −H1 consists of i.i.d., zero mean, Gaussian
elements, the per-element MSE of any unbiased estimator of H from Ĥ1 that treats the
rows of H as MMV, is lower bounded as

1
MN

E(‖Ĥ−H‖2) ≥ L2σ2(1 + 2Np)(1 + 2M)
4MMpN2

p

≈ L2σ2

MpNp
(for Np,M � 1).

obtained under assumptions for the spatial-interpolation estimate that do not hold
L/2 times greater than the universal bound
Scales as O(L2) instead of O(L)
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System Setup

M = 100 ULA elements with full antenna observations (Mp = M)
N = 100 OFDM subcarriers

I 2D ANM-based estimation practically infeasible

i.i.d. paths with θl ∼ U [0, 1], τl ∼ U [0, 1/4], cl ∼ CN (0, 1/L)
I No restrictions on the path separability

average SNR = 1/σ2 = 10 dB

Compare MSE of proposed algorithm with:
1 naive LS with Np = N (MSE = σ2 = 10−1)
2 LMMSE interpolator
3 conventional (oversampled) `1-norm minimization (BPDN)
4 O(N +M)-complexity ANM-based approach (with path separability)1,2

5 universal bound

1Z. Tian, Z. Zhang, and Y. Wang, “Low-complexity optimization for two-dimensional DoA estimation via decoupled ANM,” ICASSP 2017
2J.-F. Cai, W. Xu, and Y. Yang, “Large scale 2D spectral compressed sensing in continuous domain,” ICASSP 2017
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MSE dependence on number of pilot subcarriers
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Np/N

1 M
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( ‖

H
−

Ĥ
‖2
)

LMMSE
BPDN
algorithm in [9], [10]
proposed
universal MSE bound

Results averaging over H, Np, Z
L = 3 (very sparse channel)
proposed performs very close to optimal and outperforms other approaches
massive MIMO offers potential for (huge) denoising and/or training overhead gains
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MSE dependence on number of paths
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H
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Ĥ
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BPDN
proposed
MSE bound of Eq. (11)
universal MSE bound

Np = N (full observations)
analysis closely follows MSE of proposed algorithm
MSE scaling as O(L2) eventually results in worse performance than BPDN
For low-to-moderate L, proposed approach provides significant better performance
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Conclusion and Future Work

An ANM-based algorithm for wideband massive MIMO channel estimator was
proposed

Performs close to optimal for low-to-moderate number of paths w/o any
assumptions on path separability

Possible extensions:
I time-varying channels, mutli-antenna UEs
I multi-user, multi-cell setting

Stelios Stefanatos (FUB) Massive MIMO Channel Estimation via ANM GlobalSIP 2018 21 / 21


	Introduction and System Model
	Wideband Massive MIMO Channel Estimation via ANM
	Algorithm Design
	Performance Characterization

	Numerical Results
	Conclusion

