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Change	Detection

§ Identifying	changes	of	interest	 in	each	set	of	images	is	a	
fundamental	 task	in	computer	vision	with	numerous	
applications	like

• Fault	detection

• Disaster	management

• Crop	monitoring

• Aerial	surveying
• We	investigated	changes	in	helicopter

detection	(present/not	 present)

3Fig1:Vector Illustration of GIS Spatial Data Layers Concept for Business Analysis, 
Geographic Information System, Icons Design, Liner Style. Source: Adobe Stock Images
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Change	Detection:	Algebraic	Approaches

Earlier	attempts	to	detect	changes	varied	in	complexity	from	
some	basic	algebraic	methods	to	several	machine	learning	
methods.	Some	basic	algebraic	methods	were:

• Image	differencing	[3]
• Connection	vector	analysis	[4]	
• Ratioing	[5]	

But	the	above	approaches	yield	a	high	false	positive	due	to	
illumination	changes	were	developed	 for	single	source	imagery.	
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Change	Detection:	Advanced	Approaches
Some	techniques	 from	machine	learning	were	also	adopted	to	reduce	data	
redundancy	between	bands	and	predict	pixels	including:	

• Principal	Component	Analysis	(PCA)	[6]
• Tasseled	Cap	transformations	 [7]	
• Gramm-Schmidt	[8]
• Chi-square	 [9]
• Image	regression	 to	predict	pixels	[10]

These	were	limited	as	all	changes	were	detected	not	just	changes	of	interest.	
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Deep	CNN	as	a	Feature	Extractor
Deep	Learning	Approaches:	The	work	in	[1]	proposed	using	a	
deep	convolutional	neural	network	as	a	feature	extractor	
followed	by	a	stage	of	segmentation	and	thresholding.
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[1] A. M. El Amin, Q. Liu, and Y. Wang, “Convolutional neural network features based 
change detection in satellite images,” in First International Workshop on Pattern Recognition 
International Society for Optics and Photonics, 2016.

Fig 2: Block diagram of convolutional neural network features based change detection



Siamese	Architectures
• A	Siamese	Architecture	has	two	identical	channels,	that	are	usually	based	

on	standard	CNN	architectures.	 Each	of	the	channels	processes	different	
images.

• Potential	applications	of	Siamese	networks	include
- Person	Re-Identification
- Object	Tracking
- Change	Detection

• A	Siamese	CNN	was	used	for	change	detection	with	threshold	segmentation
- Y.	Zhan,	K.	Fu,	M.	Yan,	X.	Sun,	H.	Wang,	and	X.	Qiu,	“Change	detection	based	on	

deep	Siamese	convolutional	network	for	optical	aerial	images,”	IEEE	Geoscience	
and	Remote	Sensing	Letters,	2017.

• A	fully	convolutional	Siamese	architecture	was	used	for	change	detection	of	
hyperspectral	 images
- R.	Daudt,	B.	Le	Saux,	A.	Boulch,	“Fully	Convolutional	Siamese	Networks	for	

Change	Detection,“	 IEEE	Int.	Conf.	Image	Processing	(ICIP),	2018.
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Siamese	Network	Architecture
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Fig 4: Siamese Neural Network Architecture 
with Decision Network

• Our Siamese network has two identical 
convolutional networks that merge into 
a common decision network.

• The convolutional networks are VGG16 
architectures pre-trained on ImageNet.

• Both VGG16 networks share their 
trainable parameters.

• The decision network is trained to 
detect changes between the Target and 
Reference Images.
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Multi-Level	Feature	Concatenation
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Fig 5: Siamese Neural Network multi-level 
feature concatenation.

Blocks Size	Of	Filters

Block	5 3X3X1024

Block	5	&	Block	4 6X6X2048

Block	5,	Block	4	&	Block	3 12X12X2560
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Block 4

Block 3

Block 2
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Decision	Network	for	Siamese	Network

Fig	6:	Decision	network	architecture

• Decision	Network	consists	of	two	
Fully	Connected	(FC)	layers.

• This	tensor	variable	consists	of	
1024	tensors,	512x3x3	from	each	
network	(for	Block	5).

• The	first	FC	layer	takes	as	input	the	
outputs	of	the	two	Siamese	VGG16	
blocks.

• The	second	FC	layer	outputs	
correspond	 to	two	classes:	
Change and	No	Change.
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Decision Network Training

• The	convolution	network	(Siamese	channel)	is	used	to	extract	
features	that	are	stored	for	training	the	decision	network.	

• We	interpolate	the	feature	maps	to	48	X	48,	this	enables	us	to	
stack	features	from	different	layers.

• Extracted	features	from	different	VGG	blocks	are	concatenated	
before	passing	them	to	the	fully	connected	 layer.

• We	experiment	with	VGG	features	from	just	Block	5,	
concatenating	Block	4	and	Block	5	and	this	process	is	continued	
until	the	we	have	features	from	Block	1,	Block	2,	Block	3,	Block	4	
&	Block	5.
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Digital	Imaging	and	Remote	Sensing	
Image	Generation	(DIRSIG)

• RIT	developed	DIRSIG	is	leading	tool	for	scene	and	image	chain	simulations
• Common	uses	include:

⁃ Sensor/system	performance	evaluation
⁃ Algorithm	training	and	evaluation
⁃ Rapid	parametric	analysis

• Image	Modalities
⁃ Visible	through	thermal	infrared	(0.4	- 20.0	microns)
⁃ Passive	Sensing

⁃ Broad-band,	multi-spectral	(MS),	hyperspectral	(HS)
imaging

⁃ Polarization	(usually	limited	by	material	properties)
⁃ Active	Laser	sensing

⁃ Topographic	LADAR	and	atmospheric/gas	LIDAR
• Instruments

⁃ Single	pixel,	1D	arrays	and	2D	arrays
⁃ Filter,	diffraction/refraction	or	interferogram-based	
⁃ Photon	collection

• Platforms
⁃ Ground,	air	or	space	on	static	or	moving	platforms

• Phenomenology
• Passive	thermodynamics,	secondary	light	sources,	dynamic	

scene	content	(moving	geometry),	volume	radiometry	
(plumes,	water),	etc.

MegaScene Tile #1
- 5,000+ objects 
- 500+ million facets
- 1.6 km2 (0.6 mi2)
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Change Detection Dataset

• The DIRSIG simulation environment was used to create our training 
and testing datasets.

• Images of helicopters and backgrounds were simulated to be 
representative of pan-sharpened DigitalGlobe WorldView-2 imagery.

• Image chips for Target and Reference images of size 80 × 80 were 
generated under different backgrounds and illumination, with a 
variety of spectral and structural properties.

• We made sure that our data samples contained enough variation to 
allow the network to learn changes related to the presence of 
helicopters and ignore illumination changes.
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Example Simulated Image Chip Pairs
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Our dataset 
consisted of 

• 11,700 image 
pairs for training.

• 5,000 image 
pairs for testing. 

• Variations in 
illumination for 
target/no target 
pairs

Image Pair 1&2

Image Pair 3&4

Image Pair 5&6

Image Pair 7&8

Illumination A

No Target Target

Illumination B

No Target Target



Decision Network Training (Block 5)

• Decision	network	trained	on	
features	 from	Block	5.

• Training	accuracy	95.6%.
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Decision	network	was	trained	for	
80 epochs	with	a	batch	size	of	150
and	learning	rate	of	0.01 using	
SGD loss	on	a	TITAN	GTX	960.	
Same	hyper	parameters	are	used	
for	further	experiments.

Fig 8: Training curve for decision network trained 
with Block 5 features. 
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Example Results (Block	5	Features	)
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Reference	Image

Target	Image

Output:																													

Ground	Truth:

No	Change										Change	 												Change											Change

No	Change										Change	 												Change											No	Change

Fig 9: Results for change detection using features from Block 5 to train decision network. 



Training Curve (Block	4	&	Block	5)

• Decision	network	trained	
on	combined	features	
from	Block	4	and	Block	5.

• Learning	rate	0.01with	
SGD Loss.

• Training	Accuracy	is	
96.7%.
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Fig 10: Training curve for decision network trained 
with Block 4 and Block 5 features. 



Example Results (Block	5	&	Block	4	Features)
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Reference	Image

Target	Image

Output:

Ground	Truth: No	Change											Change													No	Change No	Change

No	Change											Change													No	Change Change

Fig 11: Results for change detection using features from block 4 and block 5 to train 
decision network. 



Results with Fully Connected Decision Network 

Test	Data	Confusion	Matrices

Block	5

Prediction→
Truth Change NO	Change

Change 4873 633

NO	Change 127 4367

Prediction→
Truth Change NO	Change

Change 4951 411

NO	Change 49 4589

Block	5	&	Block	4

Number	Of	blocks Test	Accuracy	(%)

Block	5 92.4

Block	5	&	Block	4 95.9

Block	5,	Block	4	&	Block	3	 93.5

Block	5,	Block	4,	Block	3	&	Block	2 89.1

Block	5,	Block	4,	Block	3,Block	2	&	Block	1 84.8

Accuracy
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Bootstrapping 
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• Bootstrapping	of	image	chips	to	increase	the	number	of	true	
positives	detected.

• Bootstrapping	is	performed	by	re-training	the	final	decision	layer	
with	all	false	negatives	and	false	positives.
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Accuracy

Features	Used Test	Accuracy	(%)

Block	5	&	Block	4
(Bootstrapping) 96.5



Results with Bootstrapping
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Reference	Image

Target	Image

Output:

Ground	Truth: No	Change												Change													No	Change Change

No	Change												Change													No	Change No	Change

Fig 12: Results for change detection using features from block 4 and block 5 with bootstrapping



Siamese Network with
Euclidian Distance Comparison

• Euclidian distance is a simple yet effective
distance measure for comparing
samples p and q in n-dim feature space.

• Euclidian Distance above a Threshold T=0.76
is used to detect a Change, else No Change.

• This architecture does not require supervision
(training) other than the selection of the
threshold parameter.
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Fig 13: Siamese network with Euclidean distance
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Results Using Euclidean Distance
Features Test	Accuracy	(%) Comments

Block	5 91.8

Block	5	&	4 93.4 Gives	better	results	
with	more	features

Block	5	&	4	&	3 90.6 Starts	giving	false	too	
many	false	positives

Block	5	&	4	&	3	&	2 88.5 Too	many	false	
positives

Block	5	&	4	Euclidean
(threshold=	0.52) 86.9 All	true	Positives	with	

many	false	positives

• We	observed	that	the	algorithm	generally	gets	confused	when	helicopter	 is	on	the	
tarmac

• We	experimented	with	decreasing	the	threshold	for	the	Euclidean	distance	to	0.52	
(from	0.76)	to	detect	all	 the	true	positives,	but	this	resulted	 in	many	false	positives.
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Results using Euclidean (Block 5 & Block 4)
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Source	Image

Target	Image

Output:

Ground	Truth: Change										No	Change									Change									No	Change

Fig 14: Results for change detection using features from Block 5 and Block 4
with Euclidean distance.

Change										No	Change									Change										Change



Conclusions
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• We proposed a Siamese architecture that can detect changes in the 
presence of helicopters between two satellite image pairs.

• Experiments with multilevel VGG features and a decision network 
showed that the features from Block 4 and Block 5, when combined, 
were the most useful at detecting changes.

• Bootstrapping was seen to aid in increasing the true positive rate of 
our Siamese architecture.

• The Siamese architecture with a trained decision network 
outperformed a Siamese network with simple thresholding of 
Euclidean distance.
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