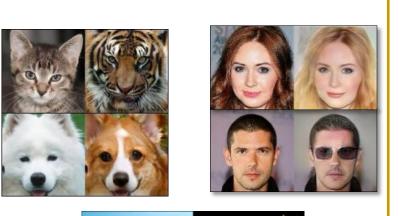
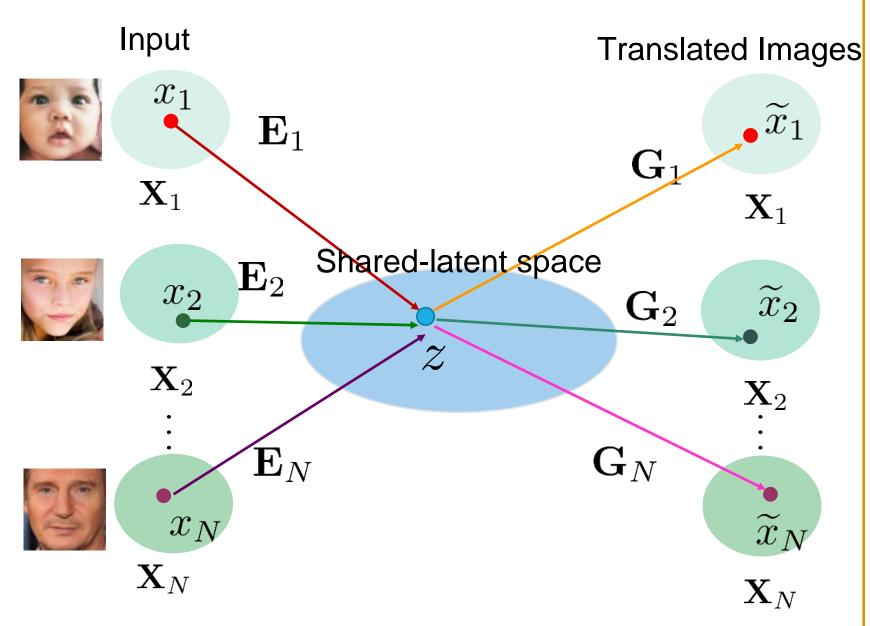

FACE AGING AS IMAGE-TO-IMAGE TRANSLATION USING SHARED-LATENT SPACE GENERATIVE **ADVERSARIAL NETWORKS Evangelia Pantraki and Constantine Kotropoulos** Department of Informatics, Aristotle University of Thessaloniki, Greece



PROPOSED METHOD

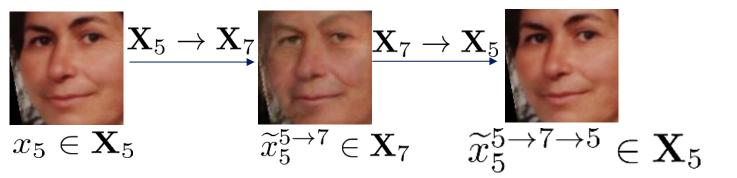
Goal: predict how a person's face might look in the future (face progression) or how a person's face might have looked when he/she was younger (face regression or rejuvenation) while preserving personality.

Method: age progression/regression formulated as the generative task of **unsupervised translation** from face images of a specific age class to different age classes.


- Exploit the dynamics of Generative Adversarial Networks (GANs).
- Apply the UNsupervised Image-to-Image Translation (UNIT) network [1], where couples of GANs (coupled GANs) are trained in image transformation between two domains.
- Learn the bidirectional transformations/ pairwise translations between age classes.

- an encoder \mathbf{E}_n
- 2. a generator/decoder \mathbf{G}_n
- 3. an adversarial discriminator \mathbf{D}_n

Schematic representation of the proposed framework



Two generative streams:

- 1. Translation stream:

Two assumptions:

- classes

epantrak@csd.auth.gr, costas@aiia.csd.auth.gr

PROPOSED METHOD (CONT.)

Network: The proposed **Aging-UNIT framework** employs GANs and Variational Autoencoders (VAEs). Each age class $\mathbf{X}_n, n = 1, 2, \dots, N$ is represented by:

 $-VAE_n$ - GAN_n

 $\widetilde{x}_k^{k \to l} = \mathbf{G}_l(z_k \sim q_k(z_k | x_k)),$ $k \in 1, \ldots, N, \ l = 1, \ldots, N, \ l \neq k$

2. Reconstruction stream: $\widetilde{x}_n^{n \to n} = \mathbf{G}_n(z_n \sim q_n(z_n | x_n)),$ $n = 1, \ldots, N$

Shared-latent space assumption ==> implemented by a weight sharing constraint applied to the high-level layers of both encoders and generators across age

2. Cycle-consistency assumption

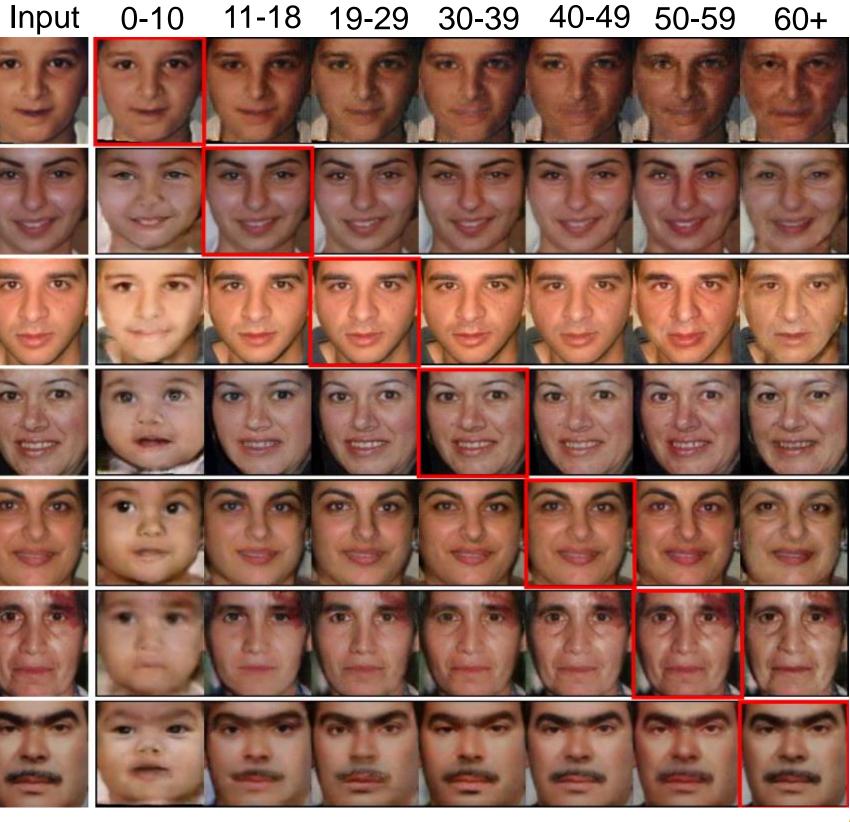
PROPOSED METHOD (CONT.)

Adversarial training between two teams:

1. Discriminators

2. Encoders and generators. To defeat the discriminators and to minimize the encoding loss and the cycleconsistency loss.

Objective function: jointly solve the learning problems of VAE and GAN subject to the cycle-consistency constraint.


For translations from age class \mathbf{X}_k to all other age classes $\mathbf{X}_l, l = 1, \dots, N, l \neq k$:

$$\min_{\mathbf{E}_{k},\mathbf{E}_{l},\mathbf{G}_{k},\mathbf{G}_{l}} \max_{\mathbf{D}_{k},\mathbf{D}_{l}} \left\{ \mathbf{L}_{VAE_{k}}(\mathbf{E}_{k},\mathbf{G}_{k}) + \mathbf{L}_{GAN_{k}}(\mathbf{E}_{l},\mathbf{G}_{k},\mathbf{D}_{k}) + \mathbf{L}_{CC_{k}}(\mathbf{E}_{k},\mathbf{G}_{k},\mathbf{E}_{l},\mathbf{G}_{l}), \\ k \in 1, \dots, N, \ l = 1, \dots, N, \ l \neq k \right\}$$

EXPERIMENTAL EVALUATION

Dataset: a subset of 21,267 images from the Cross-Age Celebrity Dataset [2] and the UTKFace [3] dataset

Age progression and regression results admitted by the Aging-UNIT framework on the FGNET [4] dataset.

EXPERIMENTAL EVALUATION (CONT.)					
Cor	mparison to		und truth	FGNET in	nages.
Input	^	round	Input	Ours	Ground
input		truth	input	Ours	truth
		3			
51	19-29	28	14	0-10	3
E.					
11	0-10	0	30	50-59	50
200	CE.	T	6	(0)	6.0
40	11-18	16	39	11-18	19
20	20	and and	3S		6
42	11-18	18	37	0-10	1
Comparison to prior works evaluated on the FGNET					
Innut	Proposod		aset.	[6]	[7]
Input	Proposed		aset. [5]	[6]	[7]
Input 29	60+	[3] 61-70	[5] 61-80	60+	60+
E	E	[3] 61-70	[5]		T
29	60+	[3] 61-70	[5] 61-80	60+	60+
29 Input	60+ Froposed	[3] 61-70 [3] 61-70	[5] 61-80 [5] 61-80	60+	60+
29 Input	60+ Froposed	[3] 61-70 [3] 61-70	[5] 61-80 [5]	60+ [6]	60+ [7]
29 Input	60+ Froposed	[3] 61-70 [3] 61-70	[5] 61-80 [5] 61-80	60+ [6]	60+ [7]
29 Input	60+ Froposed	[3] 61-70 [3] 61-70 [3] 61-70 [3]	[5] 61-80 [5] 61-80	60+ [6]	60+ [7]
29 Input 35 Input	60+ Proposed 60+ Proposed	[3] 61-70 [3] 61-70 [3] 61-70 [3] 61-70 [3] 71-80	[5] 61-80 [5] 61-80 [5] 61-80	60+ [6]	60+ [7]
29 Input 35 Input 45	60+ Proposed 60+ Proposed 60+ Proposed 60+	[3] 61-70 [3] 61-70 [3] 61-70 [3] 61-70 [3] 71-80	[5] 61-80 [5] 61-80 [5] 61-80	60+ [6]	60+ [7]

CONCLUSIONS

- Face aging is treated as a problem of translation between images for first time.
- Realistic results for face age progression and regression simultaneously, while preserving personalized facial features.
- Captures abstract face aging effects appropriate to the gender of the depicted person, although no gender information is included.
- Eliminates the need for paired samples at different ages fro training

Future work:

- Improve the quality of the generated images by further regularization.
- 2. Facilitate translations between distant age classes, causing the most drastic aging effects.

REFERENCES

[1] M. Y. Liu, T. Breuel, and J. Kautz, "Unsupervised image-to-image translation networks," in Advances in Neural Information Processing Systems, 2017, pp. 700–708.

[2] B. C. Chen, C. S. Chen, and W. H. Hsu, "Cross-age reference" coding for age-invariant face recognition and retrieval," in Proc. European Conf. on Computer Vision (ECCV), 2014.

[3] Z. Zhang, Y. Song, and H. Qi, "Age progression/regression by conditional adversarial autoencoder," in Proc. of Computer Vision and Pattern Recognition Conf. IEEE, 2017, vol. 2, pp. 2672–2680.

[4] A. Lanitis, C. J. Taylor, and T. F. Cootes, "Toward automatic simulation of aging effects on face images," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 442–455, 2002.

[5] W. Wang, Z. Cui, Y. Yan, J. Feng, S. Yan, X. Shu, and N. Sebe, "Recurrent face aging," in Proc. IEEE Computer Vision and Pattern Recognition Conf., 2016, pp. 2378–2386.

[6] S. Liu, Y. Sun, D. Zhu, R. Bao, W. Wang, X. Shu, and S. Yan, "Face aging with contextual generative adversarial nets," in Proc. 2017 ACM on Multimedia Conf. ACM, 2017, pp. 82–90.

[7] P. Li, Y. Hu, Q. Li, R. He, and Z. Sun, "Global and local consistent age generative adversarial networks," arXiv preprint arXiv:1801.08390, 2018.

ACKNOWLEDGMENTS

This research has been financially supported by the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Scholarship Code: 81).

