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Background: Multiuser Uplink with a Single BS
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Detection by Training

Train f1 such that (∀n ∈ Z≥0) f
1(r(n)) ≈ b1(n)

20[Awan2018] D.A.Awan, R.L.G Cavalcante, M.Yukawa, S.Stanczak “Detection for 5G-NOMA: An Online Adaptive Machine

Learning Approach”: in Proceedings of ICC, Kansas City, USA 2018.
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Detect & Forward with Multiple BSs
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Maximum Likelihood (ML) Estimation

Objective: Reliable Detection at CU

Learn likelihood functionsa ϕl(+1, rl), ϕl(−1, rl) at each BS l ∈ 1, R independently

amodulation is BPSK; n is omitted

At the CU

b̂ = sgn

(
R∑

l=1

log
ϕl(+1, rl)

ϕl(−1, rl)

)
; (1)

sgn(x) = +1 if x ≥ 0, otherwise sgn(x) = −1.

Future Work: How to perform (1) at the CU? Approaches include consensus,
optimal quantization etc.
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Background: Learning Framework at each BS

Tt

Learn f Learn 𝜑 Perform Detection f(r)

Calculate  𝜑( +1, r) and 𝜑( -1, r)

Td  

Channel Coherence Time Tc

Training 
Set

Training set can be used to learn both f and 𝜑
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Set Theoretic Estimation of Likelihood Functions

Main Idea: Represent available information about ϕX
1 by closed convex sets

C1, C2, · · · , CQ.

Learning Algorithm: Projection Onto Convex Sets (POCS) to obtain
ϕX ∈

⋂
q∈1,Q Cq.

Prior Information for C1, C2, · · · , CQ.

Training Data: After training f extract DX := {f(r(n))|b(n) = +1, n ∈ 0, Tt − 1}.

Normalization:
∫
S ϕX(x)dx = 1; S is the support.

Positivity: ϕX(x) ≥ 0.

One could think of other closed convex sets, e.g. mean of ϕX

1X is the random variable associated with the filter response; we consider b(n) = +1
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POCS in Finite Dimensional Gaussian Hilbert Space

Sample Set: DX := {x1, x2, . . . , xN}
Assume: ϕX ∈ G := {ϕ ∈ L2|ϕ =

∑N
i=1 wiκ(·, xi), (∀i ∈ 1, N)wi ∈ R}

Gaussian Space: If κ is the Gaussian kernel, G is a (finite-dimensional) Hilbert
subspace of L2.

L2

G

Training Set

Normalization

𝝋X

Positivity

𝝋(0)

POCS start

Why G? Simple projections & ϕX(x) is well-defined & Approximation power
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Projections and suitable POCS Algorithm

Projections PC1 ,PC2 , . . . ,PCQ

Training Samples: Projection on a half space → has a closed form

Normalization: Projection on a hyperplane → has a closed form

Positivity: Projection on a closed-convex cone → we show that it’s a quadratic
program (QP)

Parallel POCS to deal with
⋂

q∈1,Q Cq = ∅

Minimize : φ(ϕ) :=
∑Q

q=1 βq‖ϕ−PCq (ϕ)‖2G → weighted sum of distances from
each Cq

ϕ(n+1) =

Q∑
q=1

βqPCq (ϕ(n))

(
Q∑

q=1

βq = 1, ϕ(0) ∈ G

)

Converges to a ϕ∗ ∈ argminφ(ϕ) ∈ G ⊂ L2.
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Comparison with other methods

Graphs: Quantize & Forward (Q&F), Detect & Forward (D&F), Non-convex method
(NonC) [Traganitis2017]

Detection Peformance with increasing fronthaul capacity and number of BSs

Parameter Symbol Value
Number of BS Antennas M 3
Cluster Size K 6
Device SNR SNR randomly from {−3 dB,−2 dB, · · · , 9 dB, 10 dB}
Modulation b(t) QAM [±1 ± i1]
Training Block Size Tt 100
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20[Traganitis2017] P. Traganitis, A. Pags-Zamora, and G. B. Giannakis “Learning from unequally reliable blind ensembles of

classifiers”: in Proceedings of GlobalSip, Montreal, Canada, Nov 2017.
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Outline For Questions
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