Prediction-based Similarity Identification for Autoregressive Processes

Hanwei Wu, Qiwen Wang and Markus Flierl

KTH Royal Institute of Technology, Stockholm School of Electrical Engineering and Computer Science

Introduction

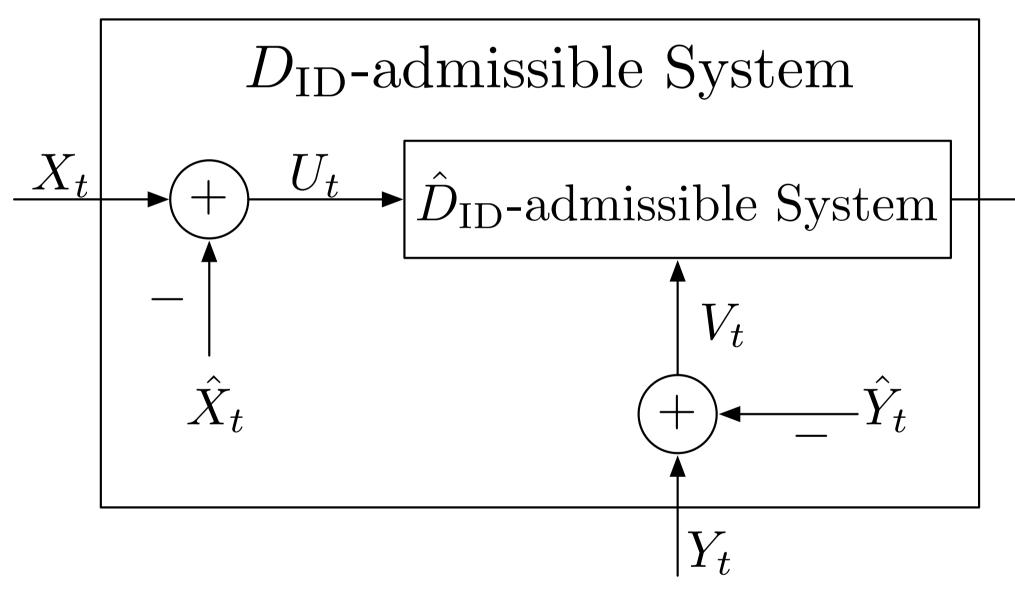
Problem

• Compression of autoregressive processes for similarity identification [1].

Goals

- Use prediction-based model to process autoregressive signals for similarity identification.
- Derive the identification rate of the autoregressive processes using predictionbased model.

Prediction-based Approach



- Database and the query are zero-mean autoregressive processes: $X_t = U_t + \mathbf{a}_m^T \mathbf{X}_{t-1}^{(m)} \text{ and } Y_t = V_t + \mathbf{a}_m^T \mathbf{Y}_{t-1}^{(m)}.$
- Optimal predictor for autoregressive processes: $\hat{X}_t = \mathbf{a}_{N_p}^T \mathbf{X}_{t-1}^{(N_p)}$, where $\mathbf{a}_{N_p} = (a_1, \cdots, a_m, 0, \cdots, 0)^T$.
- Similarity identification is conducted in the embedded D_{ID} -admissible system.

Identification rate R^P_{ID}

• Vector representation of the autoregressive process:

$$\mathbf{x} = \mathbf{M}_t \mathbf{u} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_t \end{bmatrix} = \begin{bmatrix} 1 & & \\ m_1 & 1 & \\ & m_1 & 1 \\ \vdots & & \ddots & \\ m_{t-1} & \cdots & m_1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_t \end{bmatrix}$$

 \rightarrow maybe/no

$$d(\mathbf{x}, \mathbf{y}) = \frac{1}{t} \sum_{i=1}^{t} \lambda_{t,i} d(\tilde{u})$$

where $\tilde{u} = \mathbf{Q}\mathbf{u}, \, \tilde{v} = \mathbf{Q}\mathbf{v}, \, \mathbf{Q}$ and $\lambda_{t,i}$ are the eigenmatrix and eigenvalues of $\mathbf{P}_t = \mathbf{M}^T \mathbf{M}_t.$

• Assume for each time step an ideal identification system for Gaussian data, i.e., $d(\tilde{u}_i, \tilde{v}_i) \leq \tilde{D}_{ID}^{(i)}$ with identification rate $\tilde{R}_{ID}^{(i)}$. The identification rate based on the prediction-model is obtained by the following constrained optimization:

$$\max_{\tilde{D}_{\mathrm{ID}}^{(1)},\dots,\tilde{D}_{\mathrm{ID}}^{(t)}} D_{\mathrm{ID}} = \frac{1}{t} \sum_{i=1}^{t} \lambda_{t,i} \tilde{D}_{\mathrm{ID}}^{(i)}$$

s.t.
$$\frac{1}{t} \sum_{i=1}^{t} \tilde{R}_{\mathrm{ID}}^{(i)} \leq R_{\mathrm{ID}},$$

s.t.
$$\tilde{R}_{\mathrm{ID}}^{(i)} \geq 0.$$

• Identification rate of the prediction-based model for autoregressive Gaussian processes is given by

$$R_{\mathrm{ID}}^{P} = \frac{1}{t} \sum_{i=1}^{t} \max\left\{ \log_2\left(\frac{2\ln(2)\lambda_{t,i}}{v}\right), 0\right\}$$
$$D_{\mathrm{ID}}^{P} = \frac{1}{t} \sum_{i=1}^{t} \lambda_{t,i} 2\left(1 - 2^{-R_{\mathrm{ID}}^{(i)}}\right).$$

Special Case

R_{ID}^{PS} for Autoregressive Processes

- Only the smallest eigenvalue of $\mathbf{P}_t = \mathbf{M}_t^T \mathbf{M}_t$ is known.
- Relation of the similarity measures : data space *v.s.* residual space

$$d(\mathbf{x}, \mathbf{y}) \ge \lambda_{\min} d(\mathbf{u}, \mathbf{y})$$

• Similarity threshold for embedded similarity identification system

$$d(\mathbf{u}, \mathbf{v}) \leq \frac{d(\mathbf{x}, \mathbf{y})}{\lambda_{\min}} \leq \frac{D_{\text{ID}}}{\lambda_{\min}} := \hat{D}_{\text{ID}}.$$

• Identification rate of Gaussian autoregressive processes for the special case

$$R_{\rm ID}^{\rm PS} = \log_2 \left(\frac{2\lambda_{\rm min}}{2\lambda_{\rm min} - D_{\rm ID}} \right).$$

 $ilde{u}_i, ilde{v}_i),$

 \mathbf{V})

Asymptotic Upper Bound of R_{ID}^{PS}

$$g(\omega) = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} \right\} = \sum_{k=-\infty}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} = \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \left\{ \sum_{i=1}^{\infty} e^{-\mathbf{j}k\omega} \right\} = \sum_{i=1}^{$$

mum N_l of $g(\omega)$

Simulation Results

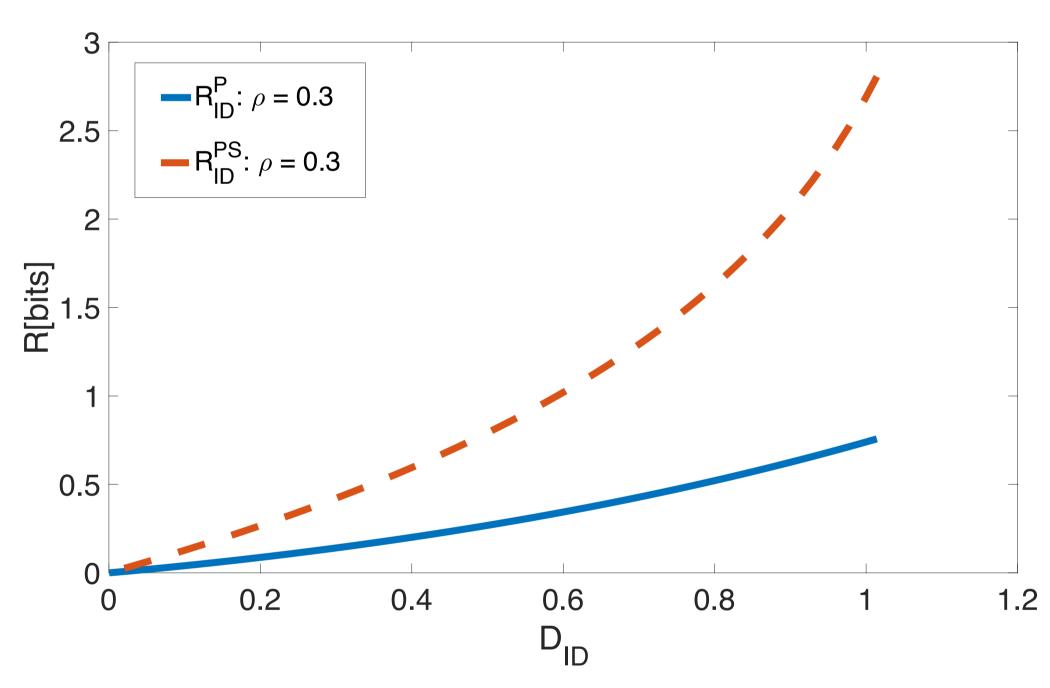


Figure 1: R_{ID}^P and $R_{\text{ID}}^{\text{PS}}$ for AR(1) sequences with $\rho = 0.3$, and varaince $\sigma_X^2 = \frac{1}{1 - \rho^2}$

Conclusions

- sian autoregressive processes.
- from our prediction model.
- value of the Toeplitz matrix.

References

2747, May 2015.

• \mathbf{P}_t is asymptotically equivalent to a Toeplitz matrix $T_t(g)$, where $g(\omega)$ is $\left\{\sum_{i=0}^{\infty} m_i m_{i+k}\right\} = \left|\sum_{k=0}^{\infty} m_k e^{-\mathbf{j}k\omega}\right|^2.$

• The minimum eigenvalue of a Toeplitz matrix converges to the essential infi-

 $\lim_{t \to \infty} \min_{i} \tau_{t,i} = N_l.$

• Propose a prediction-based model for computing the identification rate of Gaus-• The identification rate depends on a sequence of eigenvalues that we derive • The identification rate for the special case depends only on minimum eigen-

[1] A. Ingber, T. Courtade, and T. Weissman, "Compression for quadratic similarity queries", IEEE Trans. on Information Theory, vol. 61, no. 5, pp. 2729-