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Introduction
Problem
•Compression of autoregressive processes for similarity identification [1].

Goals
•Use prediction-based model to process autoregressive signals for similarity

identification.
•Derive the identification rate of the autoregressive processes using prediction-

based model.

Prediction-based Approach
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Ŷt−

maybe/no

•Database and the query are zero-mean autoregressive processes:
Xt = Ut + aTmX

(m)
t−1 and Yt = Vt + aTmY

(m)
t−1.

•Optimal predictor for autoregressive processes:
X̂t = aTNp

X
(Np)
t−1 , where aNp

= (a1, · · · , am, 0, · · · , 0)T .

• Similarity identification is conducted in the embedded D̂ID-admissible system.

Identification rate RP
ID

•Vector representation of the autoregressive process:
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•Relation of the similarity measures : data space v.s. residual space

d(x,y) =
1

t

t∑
i=1

λt,id(ũi, ṽi),

where ũ = Qu, ṽ = Qv, Q and λt,i are the eigenmatrix and eigenvalues of
Pt = MTMt.

•Assume for each time step an ideal identification system for Gaussian data, i.e.,
d(ũi, ṽi) ≤ D̃

(i)
ID with identification rate R̃(i)

ID. The identification rate based on the
prediction-model is obtained by the following constrained optimization:
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• Identification rate of the prediction-based model for autoregressive Gaussian
processes is given by

RP
ID =

1

t

t∑
i=1

max

{
log2

(
2 ln(2)λt,i

v

)
, 0

}

DP
ID =

1

t

t∑
i=1

λt,i2
(
1− 2−R

(i)
ID

)
.

Special Case
RPS

ID for Autoregressive Processes
•Only the smallest eigenvalue of Pt = MT

t Mt is known.

•Relation of the similarity measures : data space v.s. residual space

d(x,y) ≥ λmind(u,v)

• Similarity threshold for embedded similarity identification system

d(u,v) ≤ d(x,y)

λmin
≤ DID

λmin
:= D̂ID.

• Identification rate of Gaussian autoregressive processes for the special case

RPS
ID = log2

(
2λmin

2λmin −DID

)
.

Asymptotic Upper Bound of RPS
ID

•Pt is asymptotically equivalent to a Toeplitz matrix Tt(g), where g(ω) is
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•The minimum eigenvalue of a Toeplitz matrix converges to the essential infi-
mum Nl of g(ω)

lim
t→∞

min
i
τt,i = Nl.

Simulation Results
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Figure 1: RPID and RPS
ID for AR(1) sequences with ρ = 0.3, and varaince

σ2X = 1
1−ρ2

Conclusions
• Propose a prediction-based model for computing the identification rate of Gaus-

sian autoregressive processes.
•The identification rate depends on a sequence of eigenvalues that we derive

from our prediction model.
•The identification rate for the special case depends only on minimum eigen-

value of the Toeplitz matrix.
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