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Introduction
Problem

e Compression of autoregressive processes for similarity identification [1].

Goals

e Use prediction-based model to process autoregressive signals for similarity
1dentification.

e Derive the 1dentification rate of the autoregressive processes using prediction-
based model.

Prediction-based Approach

Dip-admissible System
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e Database and the query are zero-mean autoregressive processes:
X, =U;+alX!™ and Y; =V, +al Y\"!.
e Optimal predictor for autoregressive processes:
, N
X; = a%pXi_?, where ay = (a1, -+, Ay, 0, - - - ,0)!.

e Similarity identification 1s conducted 1n the embedded ﬁID—admissible system.

Identification rate Ry,

e Vector representation of the autoregressive process:
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e Relation of the similarity measures : data space v.s. residual space
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where © = Qu, v = Qv, Q and \;; are the eigenmatrix and eigenvalues of
Pt — MTMt.
e Assume for each time step an ideal identification system for Gaussian data, 1.e.,

d(t;, v;) < DI(Q with identification rate }?%. The identification rate based on the
prediction-model 1s obtained by the following constrained optimization:

S.t. Rﬁ; > 0.

e [dentification rate of the prediction-based model for autoregressive Gaussian
processes 1s given by
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Special Case

R1S for Autoregressive Processes

e Only the smallest eigenvalue of P; = M/ M, is known.

e Relation of the similarity measures : data space v.s. residual space
d(Xa Y) 2 )\mind(ua V)
e Similarity threshold for embedded similarity identification system
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e Identification rate of Gaussian autoregressive processes for the special case
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Asymptotic Upper Bound of R}>

e P, is asymptotically equivalent to a Toeplitz matrix 7;(g), where g(w) is
2
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e The minimum eigenvalue of a Toeplitz matrix converges to the essential infi-
mum N; of g(w)
im min7;; = V.
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Simulation Results
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Figure 1: R{])) and ng for AR(1) sequences with p = 0.3, and varaince
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Conclusions

e Propose a prediction-based model for computing the identification rate of Gaus-
sian autoregressive processes.

e The identification rate depends on a sequence of eigenvalues that we derive
from our prediction model.

e The 1dentification rate for the special case depends only on minimum eigen-
value of the Toeplitz matrix.
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