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Background

* Deep neural networks (DNNs) have been shown to be powerful models and
perform extremely well on many complicated artificial intelligent tasks. |l
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Adversarial Attacks
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Weighted Link (weight is a parameter part of 6)

« DNN models are vulnerable to adversarial attacks.

 Intentionally added imperceptible perturbations to DNN inputs can easily mislead the
DNNs with extremely high confidence.
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J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” ICLR, 2015.
N. Papernot, P. McDaniel, X. Wu, et al., “Distillation as a defense to adversarial perturbations against deep neural networks,” |EEE Symposium
on Security and Privacy (SP), 2016.



Problem Formulation

Suppose: a neural network has the model F(x) =y and is an m-class classifier;
the neural network classifies input x according to the maximum probability, i.e., C(x) = argmax y;.
l

The initial problem of generating adversarial examples:

min % (x — xo) Xo 1s the original legal input;
x : .
x 1s the adversarial example;
s.t. C(x)=t b

. P (x —xq) is a measure of the distortion 6 = x — xq;
X< [07 1] t 1s the target label to mislead the DNN.

L, norms are the most commonly used measures in the literature, defined as:

1 Lo measures the number of mismatched elements;

1 p P L measures the sum of the absolute values of the differences;
Hx — X0 H p Z ’xi — X0i | L, measures the standard Euclidean distance;

i=1 L., measures the maximum difference between x and xy.

Adversarial attacks use L, L, L,, and L., norms to measure the distortions are namely
Lo, L1, L, and L attacks, respectively.

*e

X Wang, Siyue et al. “Defensive Dropout for Hardening Deep Neural Networks under Adversarial Attacks.”, ICCAD, 2018.



Fast Gradient Sign Method (FGSM)

« Adversarial examples are generated directly as

x = xg — € - sign(V(lossp ¢ (xg)))

€ is the magnitude of the added distortion.

 Designed to be fast, not optimal
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J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” ICLR, 2015.



Basic Iterative Method (BIM)

« BIM gives a further modify of FGSM. Instead of
taking a single step , BIM takes multiple steps a.
Given an initial setting:

/
l‘O:Q?

« foreach iteration, it calculates:

r; = x;_q — clip(asign(V(lossp,(z;_1))))

 Notice that here BIM clips pixel values of

intermediate results atter each step to ensure that () Cloanimage  (c)Adv. image,e =4 (d) Adv. image, ¢ — 8
they are in an epsilon-bounded neighbourhood of

the original image.

A. Kurakin, |. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,”



Carlini and Wagner Attack (CW)

Solve an optimization problem :

minimize D(x —xp) + ¢ f(x)

subjectto x € [0,1]"

¢ > 0 is a constant to be chosen;
objective function f has the following form:

fx)

= max( max{Z(x); : i # t}

— Z(x)t,—K)

x is a parameter that controls the confidence in attacks;
Z(x) the input to the softmax, i.e., logits.

Lo, L_2,and L_infinity attacks

The strongest iterative attack in the literature

Original Adversarial
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N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” |EEE Symposium on Security and Privacy (SP), 2017.
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Motivations: Network Pruning

®* DNN pruning method reduces the number of

weights while preserving the accuracy of the
compressed DNN models.

« We prune 10% nonzero weights for fully
connected layers and 5% nonzero weights for
convolutional layers.

* The network model can be compressed by 7
times after pruning.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient neural network,”, NIPS 2015
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Logits Augmentation

» To further improve the robustness of DNNs under adversarial attacks, we
propose to use the logits augmentation on top of the pruning method.

» Inspired by the gradient inhibition method, which changes the weightsin the

last few layers as:
w=w~+ T * sign(w).

» Inour logits augmentation, we modify the weights in the last fully-connected
layer by

w=T7TXW

Q. Liu, T. Liu, Z. Liu, Y. Wang, Y. Jin, and W. Wen, “Security analysis and enhancement of model compressed deep learning systems under adversarial attacks,”
ASP-DAC, 2018.



Defense Models

« Mo and Co: unprotected neural network models that achieve near state-of-the-art
accuracy, i.e., 99.4% and 80%, respectively, on MNIST and CIFAR-10.

« M1 and Ci1: defense level one exploits only the pruning method.

« M2 and C2: defenselevel two exploits both pruning and logits augmentation as defense.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” |EEE Symposium on Security and Privacy (SP), 2017.



Experimental Results

 Results using Mo, M1 and M2 on MNIST

TABLE I: Adversarial attack successful rate (and distortion) of the unprotected model MO, Level One model M1, and Level
Two model M2 under four attacks (untargeted FGSM, targeted FGSM, targeted BIM, and C&W) using MNIST dataset.

Attack Untargeted Targeted Targeted C&W
Method FGSM FGSM BIM
Parameters e= €= €= €= e= €= = €= €= iter =
0.1 0.15 0.25 0.1 0.15 0.25 0.1 0.15 0.25 100
MO 90% | 17.0% | 45.6% | 1.97% | 4.52% | 12.0% | 3.89% | 14.81% | 39.64% | 99.6%

(2.19) | (3.28) | (5.45) | (2.17) | (3.25) | (5.39) | (2.11) (3.11) (5.28) (2.03)
7.4% 87% | 202% | 1.17% | 1.68% | 4.04% | 3.14% 9.9% 31.26% | 96.97%
(2.16) | (3.25) | (5.38) | (2.15) | (3.22) | (5.35) | (2.14) (3.13) (5.07) (2.28)
1.1% 1.1% 1.1% | 1.04% | 1.5% | 3.87% | 2.711% 7.9% 21.12% | 95.93%
(2.28) | (3.41) | (5.65) | (2.15) | (3.22) | (58.35) | (2.15) (3.1) (5.1) (2.5)

The experiment is evaluated on 1000 source samples from MNIST. We set the search step for line search in C&W
as 10.

M1

M2




Experimental Results
 Results using Mo, M1 and M2 on CIFAR-10

TABLE II: Adversarial attack successful rates (and distortion) of the unprotected model CO, Level One model CI1, and Level
Two model C2 under four attacks using CIFAR-10 dataset.

Attack Untargeted Targeted Targeted C&W
Method FGSM FGSM BIM

e= €= €= €= = €= = €= €= iter =

Parameters | | 0.15 | 025 0.1 0.15 0.25 0.1 0.15 0.25 100

Co 84.6% | 86.3% | 87.1% | 17.71% | 14.78% | 11.49% | 63.59% | 65.83% | 65.73% | 99.54%

(5.43) | (8.05) | (13.0) (5.43) (8.05) (13.0) (4.48) (6.66) (10.8) (2.06)

Cl 70.3% | 75.3% | 80.9% 11.2% 10.5% 10.1% 25.3% 23.8% 19.3% 85.0%

(5.43) | (8.05) | (13.0) (5.42) (8.05) (13.03) (4.47) (6.64) (10.8) (3.55)

I 24.6% | 24.5% 25% 11.12% | 11.25% | 11.16% | 43.41% | 44.9% 41.2% 83.9%

(1.42) | (2.11) | (3.41) (5.33) (7.91) (12.8) (4.43) (6.5) (10.7) (4.31)

The experiment is evaluated on 1000 source samples from CIFAR-10. We set the search step for line search in C&W
as 10.




Conclusion

« Enhance the robustness of DNNs by using pruning method and logits
augmentation

« We achieve DNN model compression by 7 times while maintaining the test
accuracy

Our method can effectively defend against both targeted and untargeted
FGSM and BIM attacks under grey-box attack assumption
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