Nov. 29th 2018, 6th IEEE Global SIP

Performance Evaluation of Objective Quality Metrics

on HLG-Based Image Coding

HDR Image Coding and TF

High dynamic range (HDR) supports wider range of luminance
 Contrast sensitivity function (CSF) –based transfer function (TF)

Contrast is

undetectable

- Conversion between absolute display light and signal value
- Designed not to perceive luminance difference

 Scene
 OOTF
 Inv.
 Codec
 EOTF
 Display

 Camera
 Camera
 Display
 Display
 AL

 HDR image coding diagram using perceptual quantizer (PQ) EOTF

2. <u>Hybrid Log-Gamma (HLG) opto-electronic (OE) TF</u>

Conversion from relative scene light to signal value

Designed for backward compatibility with existing SDR displays

Objective Quality Metrics

 Objective quality metrics (ex. PSNR) are frequently used for image coding quality assessment

Predictable?

- Much easier than subjective evaluation experiments
- "Excellent" metrics accurately emulate human perception

Results of objective metrics Distorted image (Estimated quality difference)

Reference image

PSNR

Results of subjective evaluation (Perceptual difference)

HDR objective quality metrics have been considered

- Earlier study^{*} tested metrics for CSF-based image coding
 - HDR-VQM, HDR-VDP-2.2, and PU_MS-SSIM are excellent metrics

Very

Annoying

Are these metrics still excellent for HLG-based image coding?

*P. Hanhart, M.V. Bernado, M. Pereira, A.M.G. Pinheiro and T. Ebrahimi, "Benchmarking of objective quality metrics for HDR image quality assessment," EURASIP Journal on Image and Video Processing, 2015(1), pp.1-18, 2015.

NNK

Evaluation Method

- Same manner as earlier studies
- 1. Prepare dataset consists of various distorted images
- Conduct subjective evaluation experiments, and calculate mean opinion score (MOS): "ground truth data"

3. Calculate objective quality metrics including HLG-based

- 4. Derive logistic function, which calculates predicted MOS \hat{y} from measurement x, with least-square method $\hat{y} = a + \frac{b}{1 + \exp(-c(x - d))}$
- 5. Assess similarity (correlation coeffs. and mean square error) between true MOS y and predicted MOS \hat{y}

NHK

Preparation of Dataset

22 various HDR images (cropped 2K)

- HEVC/H.265 Encoder: HEVC Test Model (HM) 16.17
 - All intra Main 10 (4:2:0/10 bit)
 - Fixed QP: 100, 200, 300, and 400 kbits

NHK

Subjective Evaluation Experiments

- 4K HLG monitor (31.1-inch, 1,000 cd/m²)
 Viewing distance: 1.5 H (approx. 0.55 m)
- Double stimulus impairment scale method, Variant I (BT.500)
 - Display 2K reference and distorted images side-by-side for 10 s
 - Five-grade scale
 - 5 imperceptible
 - 4 perceptible, but not annoying
 - 3 slightly annoying
 - 2 annoying
 - 1 very annoying
 - Evaluators: 16 video experts

Objective Quality Metrics 1

Applied 11 types of HDR metrics for luminance component 1. CSF-based metrics: HDR-VQM, HDR-VDP-2.2, and PU_SSIM/MS-SSIM Designed to input display light (1)-(1'), $Y_D cd/m^2$ 8 types ■Also tested absolute scene light (2)-(2'), Y_{AS} cd/m² **Excellent metrics** in earlier study were included (1) $L_{\rm B} = 0.005 \text{ cd}/\text{m}^2$ HLG Display $R_D G_D B_D$ OOTF $L_w = 1,000 \text{ cd/m}^2$ light $[L_B:L_W]$ (2) 3 R'G'B' **HEVC** Scene HLG to R'G'B light R_sG_sB_s OETF Y'CbCr Encoder Y'CbCr [0:1][0:1023] [0:1] HEVC stream (3') (2′) ▼ HLG Y'CbCr **HEVC** HLG Display Inv. to $R_D G_D B_D$ OOTF Y'CbCr light $R_sG_sB_s$ R'G'B' Decoder OETF R'G'B' [0:1] $[L_B:L_W]$ [0:1] [0:1023] NHK HLG-based HDR image coding process and metric inputs

Objective Quality Metrics 2

- Other 3 types are within HLG-based image coding process
 2. HLG-based metrics: HLG_SSIM/MS-SSIM
 - HLG OETF (instead of CSF-based function) + SSIM/MS-SSIM
 - Inputs are scene light (2)-(2')

3. wPSNR

- HDR metric used in standardization meeting of VVC
 - PSNR with weight depending on luma value

Inputs are HLG Y'CbCr (3)-(3')

Similarity Results

HLG_MS-SSIM is the best for HLG-based image coding
 PU_MS-SSIM and HDR-VDP-2.2 show good results
 HDR-VQM does not

PLCC		SROCC		RMSE	
HLG_M	0.9276	HLG_M	0.9238	HLG_M	0.4463
Y _D _PU_M	0.9175	Y _D _PU_M	0.9164	Y _D _PU_M	0.4751
Y _D VDP2	0.9163	Y _D _VDP2	0.9146	Y _D _VDP2	0.4783
WPSNR	0.9126	Y _D _PU_S	0.9034	WPSNR	0.4883
Y _D _PU_S	0.8959	WPSNR	0.9009	Y _D PU_S	0.5307
HLG_S	0.8734	HLG_S	0.8948	HLG_S	0.5817
Y _{AS} _PU_S	0.8613	Y _{AS} _PU_S	0.8545	Y _{AS} _PU_S	0.6068
Y _{AS} _PU_M	0.8599	Y _{AS} _VDP2	0.8421	Y _{AS} _PU_M	0.6097
Y _{AS} _VDP2	0.8460	Y _D _VQM	0.8374	Y _{AS} _VDP2	0.6368
Y _D _VQM	0.8066	Y _{AS} _PU_M	0.8356	Y _D _VQM	0.7060
Y _{AS} _VQM	0.7028	Y _{AS} _VQM	0.7236	Y _{AS} _VQM	0.8497

- Pearson linear correlation coefficient (PLCC)
- Spearman rank order correlation coefficient (SROCC)
- Root mean square error (RMSE)

NHK

Display Light vs. Scene Light

Originally, inputs of CSF-based metrics are display light in cd/m²
 Compared display light Y_D and absolute scene light Y_{AS} inputs

 $Y_{AS} = \alpha Y_S + \beta$, $\alpha = (L_W - L_B)$, $\beta = L_B$ where $L_B = 0.005$ and $L_W = 1,000$

PLCC	SRUCC	RMSE
0.8066	0.8374	0.7060
0.7028	0.7236	0.8497
0.9163	0.9146	0.4783
0.8460	0.8421	0.6368
0.9175	0.9164	0.4751
0.8599	0.8356	0.6097
0.8959	0.9034	0.5307
0.8613	0.8545	0.6068
	PLCC 0.8066 0.7028 0.9163 0.8460 0.9175 0.8599 0.8959 0.8959 0.8613	PLCCSROCC0.80660.83740.70280.72360.91630.91460.84600.84210.91750.91640.85990.83560.89590.90340.86130.8545

Significant difference $(Y_D > Y_{AS})$

Conversion from scene light to display light

Scene light inputs are inappropriate for CSF-based metrics

wPSNR in HLG vs. PQ domains

- Compared wPSNR of Y'CbCr in HLG and PQ domains
 - Applying wPSNR after converting to PQ Y'CbCr is mandated for HLG sequences in VVC meeting

Conclusions

- Validated 11 objective metrics for HLG-based image coding
 Ranking of metrics for HDR coding changes drastically depending on TF used for compression
- Objective metrics should be mindfully selected when comparing image coding methods with different TFs

Future Work

- Continue to study validation with different TFs and objective metrics
 - Explore metrics suit for both HLG- and CSF-based image coding