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Predictive Anomaly
Detection

Spectrogram domain deep
learning

Conv-LSTM GAN
Applicable to wider range of
signals
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Context:
Search for Extra-terrestrial Intelligence

Technological signals from
advanced civilizations.
Radio band of
transparency.
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Main challenges:
o Unknown signal of interest
o RFI: Crowded spectrum

o Large unlabeled dataset !
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Algorithm with minimal i
human supervision Source: seti.berkeley.edu
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Narrowband SETI

e Motivation
e Energy efficient
“attention getter”
e No natural
counterpart

Algorithmically simple

e Spatialfilter for
identification

e Traditional energy
detection inflexible
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Breakthrough Listen

e Telescopes: Green Bank Telescope,
Parkes Telescope, Meerkat Array

e Mission: 1 million stars, 100 galaxies
narrowband search.
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1709 Nearby Target Stars
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Breakthrough LISTEN

e Datarate: 1PB/day IQ, 10 GHz bandwidth

e Form spectrograms of 3 different
resolutions in real time, average by factor
of 100

Source: IOP Science



Problem Formulation:
Deep Anomaly Detection on Spectrograms

e Detect anomalies by predicting future Past observation
observations

Spectral-temporal location of anomaly
RFI filtering in same framework.

Time series prediction: RNN and LSTM
Spatial/frequency dimension: convolution
Challenge: noise is not predictable
Solution: introduction discriminator

Ly = log(1-D(G'uture)) \Discrimiry
Lg= log(D(Gfuture))+ log(l'D(xfuture))-

Real or generated?



Architecture

e (Convolutional LSTM baseline

e Dual decoder
o  Better representation
o Learn data distribution

e Multiple frames at a time

e (Generative Adversarial Loss
o  Regulated training to counter instability

LG = a(L€2-future+L£2-past)+/B LEZ-feature"'Lg,
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Prediction Results

Time

Dataset;

20000 instances of 256 X 16

candidate spectrograms.

Advantages:

High fidelity prediction
Understands discontinuity of
signals

Candidate selection
Self-supervised learning needs
no human labels




Anomaly Detection Evaluation

ROC by pixel coverage
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Conclusion

e SETlisachallenging effort due to RFI, large data volume, and
unknown signal of interest

e Spatial filtering and anomaly detection can both be framed in terms of
a generative model.

e Weintroduce a convolutional LSTM and generative adversarial model
to tackle the noisy spectrogram domain.

e Results show promise and possibility of generalizing to other signals.


#
#
#
#

References:
[1]: J. E. Enriquez, et. al. “The Breakthrough Listen Search for In-

Th a n k yo u ! telligent Life: 1.1-1.9 GHz Observations of 692 Nearby

Stars,” ApJ vol. 849, pp. 104, Nov. 2017

Contact:

seti.berkeley.edu

Extensions:

e SETI: other signals

e Other RF domains:
o Anomaly detections
(jamming, chirp etc. )
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