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The Need for Spectrum Sharing

• Radar and communications jointly consume most of the spectrum
below 6 GHz.

• Until recently, allocated spectrum for commercial and non-commercial
purposes (i.e. military radar) were on distinct bands.

• S-band radar (2− 4 GHz) partially overlaps with LTE and WiMax
systems.

Figure: Spectrum utilization in downtown Berkeley (UC Berkeley, 2007).
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The Need for Spectrum Sharing

• As the number of connected devices grows, these band distinctions
limit a more efficient use of the spectrum.

• Spectrum regulators have proposed to make the 3.55 − 3.7 GHz
band (used for military radar) available to commercial cellular sys-
tems.

• The need arises for an efficient use of the spectrum for both sys-
tems, without one interfering with the other → Spectrum sharing
approaches.

Figure: Spectrum utilization in downtown Berkeley (UC Berkeley, 2007).
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Existing Approaches for Spectrum Sharing

1 Avoid interference by large spatial separation.

Figure: Shipborne radar exclusion zones in 3.5 GHz band (NTIA 2015).

2 Dynamic spectrum access based on spectrum sensing.

3 Spatial multiplexing enabled by the multiple antennas at both
the radar and communication systems.
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MIMO Shared Spectrum Literature

• Methods that address the objectives of one or the other system
but not both.

• Nullspace projection implemented by radar to reduce interference
towards the communication system [Sodagari et al. 2012] or vice
versa.

• Nullspace projection precoding to avoid interference is possible on
either the radar or the communication systems but not on both
[Mahal et al.,2017].

• Co-design methods that address the constraints of both systems.
• Communication system and/or radar precoding schemes are

co-designed in order to maximize an objective function of one user
(typically the radar), subject to meeting certain constraints for the
other (typically the communication system)
[Li, Kumar, and Petropulu, 2016] [Li, Petropulu, Trappe, 2016]
[Li and Petropulu, 2017]
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Spectrum Sharing Formulation

• M r
R ×M t

R MIMO radar

• M r
C ×M t

C MIMO communication system
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Interference During Spectrum Sharing

• Interference at the radar occurs when the radar is listening, or
forwarding the obtained samples to the radar fusion center.

• Use transmit precoding to limit the interference to the radar.
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The Coexistence Signal Model

• The received signals at the radar and communication RX are

Radar fusion center: (1a)

Ω ◦YR = Ω ◦
(
DPS︸ ︷︷ ︸
signal

+ CPS + G2XΛ2︸ ︷︷ ︸
interference

+ WR︸︷︷︸
noise

)
, (1b)

Communication receiver: (1c)

YC = HX︸︷︷︸
signal

+ G1PSΛ1︸ ︷︷ ︸
interference

+ WC︸︷︷︸
noise

, (1d)

where
• P,S,Ω: radar precoder, waveforms, subsampling matrix
• D =

∑K
k=1 σ

2
β0

v∗t (θk)vTt (θk)

• C ,
∑Kc

k=1 β
c
kvr(θ

c
k)vTt (θck): clutter response matrix

• X , [x(1), . . . ,x(L)]: comm codewords x(l) ∼ CN (0,Rxl)
• Λ1,Λ2: diagonal matrices denoting random phase offsets
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The Co-Design Problem

• Radar SINR:

SINR =
mTr

(
PPHD

)
mTr

(
PPHC

)
+
∑L

l=1 Tr
(
G2lRxlG

H
2l

)
+mσ2

R

. (2)

Constraints:

• The power budget at the communication transmitter:∑L
l=1 Tr(Rxl) ≤ Pt,

• The requirement on the average communication rate achieved
during the L symbol periods

Cavg({Rxl}) ,
1

L

∑L

l=1
log2

∣∣I + R−1
CinHRxlH

H
∣∣ ≥ C (3)

RCin = G1PPHGH
1 + σ2

CI.
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The Co-Design Problem

• Cooperate on estimating G1, G2. Share H, G1, and G2 with the
controller.

• The controller designs Φ = PPH , Ω and {Rxl} as

max
{Rxl}�0,Φ�0,Ω

SINR ({Rx},Ω,Φ) ,

s.t. Cavg({Rxl},Φ) ≥ C, (4a)

L∑
l=1

Tr (Rxl) ≤ PC , LTr (Φ) ≤ PR, (4b)

Ω is proper (4c)
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The Interference Channel

• The interference channel matrix is directly related to the radar loca-
tion, as seen in the following model [Heath, 2017] [Molisch, 2012]

G2 =

√
Exλc

4πd
√
M t
C

(√ K

1 +K
SLoS +

√
1

1 +K
SNLoS

)
(5)

• λc: carrier wavelength; Ex: transmit energy; d: the radar distance
from the smartphone; K is the Rician factor.

• SLoS = er(Ωr)et(Ωt)
T and SNLoS a matrix of i.i.d. NC(0, 1) en-

tries.

• Ωt = sin(φt) and Ωr = sin(φr) the angles of incidence of the
Line-of-Sight path on the TX and RX steering vectors

et(Ωt) =
[
1, e−j

2π∆t
λc

Ωt , . . . , e−j(M
t
C−1)

2π∆t
λc

Ωt
]T
,

er(Ωr) =
[
1, e−j

2π∆r
λc

Ωr , . . . , e−j(M
r
R−1) 2π∆r

λc
Ωr
]T
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Security of Spectrum Sharing

[Li and Petropulu, 2017]

• The controller is incorporated into the MIMO radar.
• This avoids interference during communication with the radar.
• Also, the controller is a trusted node.

• The controller collects information from the two systems and de-
signs the precoders so that some performance objective is met.

• The computed precoder is passed to the communication system.

• The precoder contains implicit information about the radar.
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Security Concern

• Can the precoder be used by an adversary to launch an inference
attack?

• Can the adversary reverse engineer the precoder matrix to infer the
radar location?
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Communication System Precoders

• Two precoders are examined here:
• Null Space Precoder - Zero forces the interference at the radar

receive antennas

Pn = nullspace(G2)

Assumes more comm system TX antennas than radar RX antennas

[Sodagari et al. 2012, Babaei et. al., 2013, Khawar et. al.]

• Optimized Precoder - Designed to minimize interference at the
radar RX, subject to the comm system meeting certain rate and
power constraints.

[Li, Petropulu, Trappe, 2016],[Li, Kumar, and Petropulu, 2016],
[Li and Petropulu, 2017]
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Adversary Inference Attack

• Suppose an adversary is operating S independent smartphones, and
observes at every point in time t = 1, . . . , T all precoder matrices
Pt = {Pt

1, . . . ,P
t
S} sent to the smartphones by the controller.

• For simplicity, each precoder is obtained independently of the oth-
ers.

• The adversary is not capable of estimating G2; otherwise it would
easily locate the radar.

• The adversary treats the unknown radar location as a random vari-
able R, and attempts to create an estimate of its pdf, pR, based
on the observed precoders sent by the controller.
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Optimal Adversary Estimation I

• This can be formulated as a Bayesian inference problem, where the
conditional pdf of a sequence of T candidate radar locations given
a sequence of T precoders equals

pR
(
R1, . . . , RT |P1, . . . ,PT

)
=

pP |R
(
P1, . . . ,PT |R1, . . . , RT

)
pP (P1, . . . ,PT )

pR
(
R1, . . . , RT

) (6)

• pP |R is the probability of the observed precoder matrices given a
specific radar location.

• May assume that all candidate locations are equally likely, i.e., the
a priori pdf pR

(
R1, . . . , RT

)
is a constant.
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Optimal Adversary Estimation II

• May also assume that the controller assignments are memoryless,
i.e.,

pR
(
R1, . . . , RT |P1, . . . ,PT

)
=

T∏
t=1

pP |R
(
Pt|Rt

)
∑
R

T∏
t=1

pP |R (Pt|Rt)

(7)

R is he set of all candidate location sequences.

• If the adversary knew pP |R
(
Pt|Rt

)
, it could compute (7) for every

possible combination of candidate locations.

• Optimal estimation is computationally prohibitive → use a super-
vised machine learning approach for radar location estimation.
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Machine Learning Estimation

• Adversary divides search area into cells.

• Adversary trains a classifier for every separate cell, using training
data and their corresponding labels.

• Features in the classification problem are the precoding matrices,
separated into real and imaginary parts, and stacked in a long vec-
tor.

• Once training has been completed, the adversary can decide which
cell a new precoder corresponds to. This task can be parallelized.
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Mutual Information

• One way to quantify the amount of information a precoder reveals
about the radar location is via the Mutual Information (MI).

• R = (Rx, Ry) ∼ p(Rx, Ry) denote radar coordinates, and
P = [P1, ..., Pn]T ∼ p (P1, . . . , Pn) the precoder vector.

Mutual Information I(R;P ) ,∫
· · ·
∫
p(Rx, . . . , Pn)log2

p(Rx, . . . , Pn)

p(Rx, Ry)p (P1, . . . , Pn)
dRx . . . dPn

(8)

• MI can be estimated numerically using multi-dimensional histograms.
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Simulation Setup

• The adversary will test all cells and make a binary decision on the
presence of the radar in a particular cell.

• We assume the adversary is controlling S = 5 smartphones.

• The radar has M r
R = M t

R = 6 antennas and the communication
system has M t

C = M r
C = 8 antennas.
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Simulation Setup

• Baseline approach (Pb) → the adversary observes G2.

• Three separate balanced training sets Lcb, Lcn, Lco, of 6000 samples
each were created for cell c = 4, for the cases where the adversary
observes Pb, Pn, and Po, respectively.

• A separate test set T c for c = 4 was created, consisting of 2375
samples; 500 samples correspond to precoders for radar locations
in c = 4, and 1, 875 samples for the radar in all other cells (125
samples for each c 6= 4.

• To avoid over-fitting, the radar locations used for training were
different that those used in testing.

• For training we used the Support Vector Machine (SVM) and Naive
Bayes (NB) classifiers (Matlab functions fitcsvm and fitcnb, respec-
tively).

26 / 38



Simulation Setup
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• ROC for cell c = 4

• Pb results in almost perfect radar location prediction.

• Using Po results in a random adversary guess→ Po a better option
in protecting the radar privacy.
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Mutual Information

• Numerically computed mutual information for all assumed precoders.

• Depending on precoder, the bins of the multi-dimensional histogram
where created from the positive samples of Lcb, Lcn, or Lco, using
the K-means clustering algorithm.

(a) (b)
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Mutual Information

• Notice that I(R;Po) < I(R;Pn) < I(R;Pb) → greater reduction
in the uncertainty of R when observing Pb than when observing Po.

• In other words, Pb reveals the most information about a radar
location while Po the least.

(a) (b)
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Mutual Information

• For Pb or Pn, an increase in the # of transmit antennas at the
communication system results in an increase to the mutual infor-
mation → respective increase in the column space of Pb directly
affects the size of Pn as well.

• The value of I(R;Po) is very small → R and Po are close to being
independent, with most of the radar information being suppressed
in the optimized precoder.

• Pn is only a function of G2 but Po is additionally a function of
H,G1.

• Po is obtained as the solution of a constrained optimization problem
→ contribution of G1 to the final solution less transparent and H
by definition has no information regarding the radar position.

• The optimal precoder Po seems to be better for the radar privacy
but involves more computational complexity.
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Conclusions

• We examined the extent to which the adversary can infer radar loca-
tion information from the communication system precoder matrix,
using a machine learning based inference attack.

• Depending on the used precoder scheme, our simulations indicated
that this was indeed possible, a result further supported by our
estimation of the mutual information between the precoder matrix
and radar location.

32 / 38



Future work

The precoder P =
√

Rxl is the solution to:

min
Rxl

L∑
l=1

Tr(G2RxlG
H
2 )

s.t.
L∑
l=1

Tr(Rxl) ≤ PC (restricts comm. TX antenna power)

1

L

L∑
l=1

log2|I + R−1
wl HRxlH

H | ≥ C (restricts comm. average capacity)

I(R; P) ≤M

where Rxl is the transmit covariance matrix, M an accepted scalar
value for which we assume privacy is achieved.
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Thank you!
Questions?
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