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Compressing unstructured mesh data from computer simulations is very challenging. Using a test problem from a fusion simulation, we compare three methods on

the accuracy of reconstruction and the reduction in data size. Our results indicate that compressed sensing works well if the data are sparse, regression requires

regions with nearly uniform values, and spline fits, with the fewest restrictions on the data, performs the best.

Coefficient of determination between actual data, a, and reconstructed data, p:

ORF =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑔𝑧𝑖𝑝𝑝𝑒𝑑 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑔𝑧𝑖𝑝𝑝𝑒𝑑 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎

A motivating example from a fusion simulation

Clockwise from top left: A schematic 

of a three-dimensional toroid 

representing the tokamak, with a 

poloidal plane high-lighted.  The 

variable of interest at time step 1500 

on the poloidal plane, with 591,745 

grid points. Slices 1, 5, and 9, in red, 

pink, and blue, respectively, used in 

our work, each with 37,000 grid 

points

Description of the methods

. 

Spline fits using ISABELA:

• Split data into fixed size windows of size W.

• Sort the data and fit B-splines with C coefficients.

• Store relative error between estimated and actual values when errors exceed threshold E. Results of compression and comparison of methods

• ISABELA: Reducing window size reduces ORF as more windows result in more coefficients. Increasing error threshold 

increases ORF and decreases R2 as more error is tolerated. Results are independent of the time step or slices. 

• Compressed sensing (GPSR): The more sparse slice 9 has perfect reconstruction, but not slice 1 with fewer non-zeros. 

Increasing the number of measurements improves R2 but usually lowers ORF. 

• Regression using LWKR: Accuracy improves if we use a lower sampling rate but keep a higher percentage of the high-error 

points. Data that has large regions with roughly constant values (slice 1 at mid-time) gives better reconstruction. 

Challenges to the compression: 

• unstructured mesh

• double precision data

• positive and negative values

• large variation in nearby 

values

• large range of values within 

and across time steps
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Output reduction factor::

Compressive sensing using GPSR:

• To introduce sparsity, set all scaled values in range [-0.03,0.03] to zero

• Apply the gradient projection for sparse reconstruction (GPSR) method, with a user defined value of m, the number 

of measurements

Machine learning using locally-weighted kernel regression (LWKR):

• Choose a percentage, S, of samples randomly as far apart from each other. 

• Use the values at these samples as the training set at each time step.

• Use locally weighted kernel regression to predict values at remaining points.

• Identify a fixed percentage (HERR %) of sample points with highest errors; write out values along with indices. 

Time Step  
1500, 
Slice: 

ISABELA GPSR LWKR

parameters R2 ORF parameters
(m/n)

R2 ORF parameters R2 ORF

1

W1024C30E1 0.99997 3.4460 0.6 0.91684 3.8925 S10HERR15 0.98601 3.0699

W512C30E1 0.99997 3.1077 0.7 0.97974 3.6201 S20HERR8 0.98225 3.1776

W1024C30E10 0.99876 4.8278 0.8 0.99926 3.6346 S25HERR5 0.97868 3.1716

5

W1024C30E1 0.99997 3.2194 0.6 0.99992 3.3394 S10HERR15 0.97657 3.0629

W512C30E1 0.99997 2.8799 0.7 0.99995 3.5796 S20HERR8 0.96793 3.1709

W1024C30E10 0.99792 4.4911 0.8 0.99996 3.5182 S25HERR5 0.96193 3.1624

9

W1024C30E1 0.99997 3.2455 0.6 0.99999 3.3443 S10HERR15 0.95877 3.0375

W512C30E1 0.99997 2.8922 0.7 0.99999 3.1114 S20HERR8 0.94501 3.1514

W1024C30E10 0.99791 4.5455 0.8 0.99999 3.1217 S25HERR5 0.93345 3.1489

Description of the data from the simulation

. Scale the data at each time step by the absolute of the maximum value and extract the three slices.  Apply the methods to 

each slice and evaluate metrics for different parameters.  

Top row: slice 1; middle row: slice 5; bottom row: slice 9

Time step 500                         Time step 1000                          Time step 1500                        Time step 2000


